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FOREWORD
j' ,_:

, This is the final report on the Sail Film Materials and Supporting

Structures for a Solar Sail -- A Preliminary Design prepared by the Jet

: Propulsion Laboratory, California Institute of Technology, Pasadena,
°_ California. The effort was supported by technology work at NASA-ARC,

NASA-LaRC, NASA-MSFC, and by various industrial contracts. The report
covers the entire materials portion of the Solar Sailing Development

Program conducted over the period October 1976 through July 1977
/:,! (FY 1977).

...._ The NASA-HQ personnel responsible for coordination of this
materials program were G. Deutch, A. Henderson and B. Achhammer whose

suggestions and recommendations contributed significantly to the effort.

o

=_ The materials development task of the Solar Sail Advanced System

o'_ Technology program at JPL was performed ander the auspices of the
• Applied Mechanics Division with W. F. Carroll as the Task Manager.

: Supporting technical personnel at JPL were drawn mainly from the Applied
o Mechanics and the Control and Energy Conversion Divisions. A partial

list of the supporting technical personnel from the other NASA centers

_ who contributed to the program were as follows:

_': Ames Research Center Langley Research Center

_ ' J. Parker W. Slemp
: :' A. Heimback V. Bell

_ K. Johnson
[:

......'!!. Marshall Space Flight Center

• R. Gauss

.... A. Whittaker

0['..:( Many individuals at JPL participated in the engineering Investi-
:': gations and laboratory analyses that made the sall materials develop-

• [/i[ meat effort a success. Their contributions are acknowledged below:

_o_" F. Bouquet basic film, system performance
H. Broyles basic film, system performance

_:"°o W. Dowler system performance

_: R. Fraser coatings

_:"i R. Feadors system performance
':_ A. Gupta system performance

R. Gauldln system performance

• G. Harbord joining and handling

S. Kalfayen joining and handling
R. K1emetson system performance

R. Landel basic film, system performance

D. Lawson system performance
P. Lindenmeyer basic film

O. Mayes system performance
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( R. Mueller coatings and thermal control

.... R. Somoano coatings and thermal control

J. Stevens system performance

G. Varsi basic film, system performance
E. Yen basic film, system performance

_o _ Industrial contractors and institutions who made significant contributions
; to the sall materials development effort either directly by performing laboratory

development and materials testing or indirectly by providing test materials and

_ : data were as follows• A llst of each of _he individual contributors at these

:: organizations would be very difficult to compile. Contractor reports are listed

_ In Appendix III.

_: Battelle Columbus Laboratories • . . Columbus, Oh

: °°' Boeing Aerospace Co ......... Seattle, Wa.

_-__ Brookhaven Laboratories ...... Long Island, N. Y.

_,. Clba-Gelgy Corp .......... Ardsley, N. Y.

% E.I. duPont ........... Wilmington, Del.
" Dyne Optics ............ Corona Del Mar, Ca.

Endurex Corp ............ Mesgulte, Texas

Ferro Corp., Composites Dlv .... Culver City, Ca.
G

General Dynamics, Convair Dlv .... San Diego, Ca.
CM Vacuum Coating Laboratories • . Newport Beach, Ca.

King Seeley Corp .......... Winchester, Mass.
Kelm Precision Mirrors ....... Burbank, Ca•

: _ Midwest Research Institute -
,:: North Star Dlv ........... Minneapolis, Minn.

_; Optical Coating Laboratories, Inc.. Santa Rosa, Ca.

Richmond Corp ............ Redlands, Ca.
• Rockwell International

_ Science Center ........... Thousand Oaks, Ca.

Surface Activation Corp ....... Syosset, N. Y.
Surface Science Laboratories .... Palo Alto, Ca•

.: P.J. Schweitzer .......... Lynn, Mass

: TRW Defense and Space

o Systems Group Redondo Beach Ca.... • • • • • • • • • • • , •

....,_ University of California¢)

' at Los Angeles ........... Los Angeles, Ca.
i.

!
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Chapter 1

INTRODUCTION

In November 1976, NASA initiated an effort to examine solar

sailing technology with a mission to rendezvous with Halley's Comet.

Since the mission would require a new project start in FY '79 (Oc_ 1978)

in order to meet an early 1982 launch date, the purpose of the study

was to design and to demonstrate project technology readiness by the

summer of 1977.

The background of Solar Sailing and details of the complete

system design are described in Refs. 1 and 2.

The critical "enabling technology" for a Halley Comet Ren-

dezvous Mission (HCRM) is an ultra-light, highly reflecting material

system capable of operating at high solar intensity (high temperature,

high radiation dose) for lon_ periods of time.

When the program was initiated in late 1976, a target area

density of 4.5 gm/m 2 had been established for the Sall material system

(basic film, Joints, coatings, reinforcement/rip stop). The Sall was

required to operate more than 1 year at 0.3AU (ll suns); the equilibrium

Sail temperature at that solar intensity, based on estimated properties,
was 370oc. Furthermore, films (slmilar to those which have been fabri-

cated for _pace instrument covers) requiring production and handling in

i a controlled laboratory environment were unacceptable. The total area

of the fliRht HCRM Sall was nearly 10,000,000 it2; with scrap and test

and spare hardware, twice this quantity was required.

By July 1977, feasibility had been demonstrated for a Sall

material System (film, joints, coatings) wlth an area density of only

3.3 Fm gm/m 2, producible in the required quantities and capable of

operating at 0.25 AU (!b suns), with an equilibrium temperature of

250°C. It might have been possible to go closer to the sun (with higher

I
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_q

thrust at a higher temperature) for the film, but this was not necessary

_.- for a successful mission and was beyond the demonstratable limits for

_ " the -_tructure and spacecraft.

'q

Analyses and experiments late in the study indicated a rea-

sonable probability of achieving a Sail material system with an area

density approaching 1.6 gm/m 2. In fact, extrapolation of technology to

such a density was more sound and defensible than the original target

_-o .: of 4.5 gm/m 2 had been in Nov., 1.976.

, o The success of the Sail materials program and the data

• reported here is the result _f coordinated four-center NASA (JPL, ARC,

' ,_ LaRC, MSFC) studies and cooperative and subcontracted efforts by a large

,,_ group of industrial, research and academic organizations.

.... As a tool for planning, management and reporting, the mater-

. ials program was organized into five major sub_Liv_sions with the first

' four addressing the film materials. The main technical body of this
' O' )i

_, report, chapter 4, follows this organization. The major subdivislons

are:

:: (a) Basic FilmO •

i.

° "_ (b) Coatings and Thermal Control

_-_. (c) Joining and Handllng
0

' (d) System Performance (failure mode analysis, radiation

= effects, etc.)

_ (e) Supporting Structures Assessment for the Heliogyro
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_ SUMMARY
i

6 The Advanced Systems Technology (AST) materials e?_ort for

the Solar Sail, consisted of activities in five principal areas:

i. (i) Basic film materials and their properties, (2) radiative coatings

_: and their properties, (3) Sail material joining methodology (4) space

environmental stability/performance assessments and (5) supporting

oo°:i- structures assessment for the Heliogyro.

In the area of basic film materials, an exhaustive survey

was performed with the help of other NASA centers, an industry confer-

: _" ence for film producers, and a contracted effort at Battelle-Columbus

il Laboratories A first choice basic film was selected, which met all

mission requirements• This material was Kapton H, a thermosetting polyi-
"i

%_ mide manufactured by E I. duPont,._ • •

2.
?.

_i°'i A series of target properties was established for the basic

polymer film which included an areal density of < 3 g/m 2 (this value had

...... evolved from an earlier requirement of 3.6 g/m 2 at the start of the

program), thermal stability range of -130 to 250°C, thermal cycling

....... capability of 1600 cycles between 210 to 250°C, high radiation resis-

o_ tance, tensile strength of 28,000 to 35,000 KN/m 2 and tear initiation

io resistance of about: 0. i N/_m. Five candidate polyimides were identified

and ranked in the following order on the basis of their properties ando

!_i processing characteristics: The prime candidate, Kapton, directly man-

ufactured by duPont (to meet the thickness requirement), chemically

.... etched Kapton, plasma etched Kapton, and two thermoplastic polyimldes:

b_i Ciba-Geigy B i00 (or possibly P i00) and UpJohn 2080. On the basis of

' _ available data and preliminary test results, directly manufactured Kapton

was initially selected for the benchmark Solar Sell design. But further

thermal stability testing _as performed on this material and the

Schweitzer processed B-100 to satisfy missing data requirements.. The

'_ : conclusions were: (I) the i_Itial properties of Kapton are superior to

those of B 100; (2) Some B 100 properties improved on aging, but never

exceeded those of Kapton; (3) at 250°C Kapton is significantly better

2-1
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• than B i00; (4) at 270°C both materials are at their best, and B I00

' improves, apparently by cross-llnklng after about I0 days e_.posure;

(5) Both films meet the target properties at 250 to 270°C; at 305°C

_, B I00 properties begin to deteriorate and Kapton is superior.

..... Although B I00 has some advantages, e.g. potentially more

"_ producible in ultrathin thicknesses, lower density and lower cost, it,i

was not proposed as the baseline material for the HCRM primarily because

....., much less technical data was available than for Kapton and it had not
>. .

been produced commercially in large quantities.

5.

'_ The criteria for selection and evalaation of Sail film coat-
)%' .i

_,_ ings were established. They included high reflectance and specularity

° on the front (sun facing) surface, durability, capability to survive

long-term space exposure, light weight, l_:wcost, high thermal emittance

_o (on the back surface), capability to provide radiation protection to

the organic film, and sufficiently low resistivity to dissipate space

-:" charges.

Y

Coatings were evaluated by examination of the technical lit-
eo

erature, theoretical analysis and detailed test measurements. To assist=

_, in this area, a thermal radiative property measurements program was
O

....°.. performed at TRW Defense and Space Systems Group. Aluminum (IO00A) was

selected as the baseline reflective coating over silver because of its

° _ better performance in the UV region, better tarnish resistance ando d

_ lighter density. On the basis of data gathered from incoming receiving

_o tests by TRW on commercially procured alumLnized polymer films over a

_:_,. period of several years, a criterion for a minimum solar reflectance

•_i_ of 0.88 was established. Aluminum al,_o ._ati.'_flesthe other criteria

mentioned above. Several thermal coatings effectively increased the

_ emi_tance (>0.6) of the backside of the Sell film and thus lowered the

o: maximum operating temperature of the Sail during the near-sun et._counter

: to an acceptable value (for pol._ner films) of 250°C. Initlal estimates

_i' of Sail operating temperature were 370°C. Chromium (125X) was selected

as the bast.line backslde coating. Indlum-tin-oxlde (ITO) and carbon,
:.

ew_nly dispersed t'ar,._ugh the potymer material, are alLernatives. Carbon

2-2
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._ I coatings were found to be relatively unsatisfactory in most respects.

.... ITO (1500_) is considered to be a viable candidate, especially if the

.i emitting side coating were required to be of a greater thickness to

o afford better radiation protection (the emlttance enhancing characteris-

...... tics of the chrome is considerably reduced at thicknesses greater than

_: ._ 125_).

_ Losses arising from sublimation and sputtering by solar

.: protons of either aluminum or chromium were estimated to be small and

: are not considered to be a problem. Although some limited data were

obtained, the capability or lack of capability of the emitting side

coatings to adequately protect the polymer film from damaging charged

" _"-i particle radiation was not well established. The protection afforded

:_ by the aluminum reflector coating (ii00_) however, appeared quite ade-

quate. The most serious existing reservations about the reflective and

emissive coatings are potential degradation of specular reflectivity

and emis¢ivity during handling, storage and exposure to the space
%

_ i environment.

i

Several coating processing methods were examined, e.g. phy-

slcal vapor deposition, ion beam sputtering and ion plating. _ile all

_ _ these methods appeared feasible, increased and/or improved production
o

facilities would be required, especially for large volumes of chromium.

The physical vapor deposition method was selected as the baseline

_ process primarily because it was the most commercla_ly developed tech-

, nique for applying _he quantities of film coatings required for the

_ Sall production schedule for HCRM.

•i Various Joining methods were evaluated and tested for bond-

ing Sail film segments. Although considerable advancement in technology
.L,

, would be necessary, a method was developed that demonstrated the feasi-

'i bllity of a continuous, high-speed "heat seal" type adhesive joint.

Calculations established that over 400 miles of seams would be required

just to join Sail segments (for either the Heliogyro blades or the

square Sail configuration). _

2-3
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_ _ A thin bond line of _3.8 pm (0.15 mll) was developed for the

modified butt type, adhesive joint. Commercially available bonding equip-
o-

.... _: ment was located that could be modified to perform the bonding process
iilr'

: and a 4' x 5' demonstration panel was fabricated. The adhesive selected,
o "

duPont NRI5OB2G, was found to adequately mee_ the strength requirements

o for the Joint. Provisions were made in the joint design to tightly

control the amount of exposed adhesive on the sun-facing side of the

,_, Sail to minimize thermal problems.

_' ... Necessary further technology advancements that would be

,, __,- required for Sall fabrications include the capability for handling large

quantities of the fragile, ultrathln films during Sall fabrlcation while

o_ retaining the critical optical and thermal properties.
o o :, .

L,_ • Simulated space radiation testing was conducted on Sail film
i "

. materials at the Boeing Co., Brookhaven Labs, NASA-MSFC, NASA-ARC and
_!'

_" JPL. The bare Kapton was sufficiently thermally stable at temperatures
,/

up to 300°C. However, it was found to be readily degraded by UV at

temperatures of 260°C and higher. Exposure of bare Kapton and BIO0 film!-

in vacuo, at ii suns solar UV intensity and 1.3 KeV protons resulted in

film blackening and carbonizing. Despite attempts to control the test

..... temperatures, it was apparent that thermal runaway had occurred based

upon the extent of thermal degradation that was observed. This was

mainly attributed to deficiencies in the test design. While these tests

• on uncoated samples were plagued by thermal runaway, resulting in the

predominance of very high temperature effects, the results did not indi-

cate that particulate radiation (and UV) would result in significant

_ ,'" degradation of coated Kapton.

• Test results on Kapton stability were also taken from the

literature and from experimental results obtained as part of the mater-

.. lals evaluation program. These were analyzed to also help to predict
ii'

the thermal stability of Kapton during a HCRM. These analyses indicated

_ that Kapton would have adequate thermal stability, especially if the

film were thermally annealed prior to Sall fabrication to prevent poten-

tial hydrolytic degradation.

., 2-4
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_--- Additional investigation of tilekinetics of degradation and

mechanical properties indicated a close correlation between chemical

o degradation and deterioration of mechanical properties, and showed that

_. mechanical integrity would be adequate for the miss_on by a large margin

,__i_: of safety. For Kapton, creep at 50 psi and 250oc was estimated to be
• o •

: 3.3 x 10-3 in/in and thermal expansion (from -i00 to 250oc) was estima-

ted to be 1.02 x 10-2 in/in. Thermal shrinkage (nitrogen atmosphere,.

• 264°C, 3 days) was -3.3 x 10-3 in/in.

: Analysis of limited thermal aging data for the baseline

:_"! adhesive joint indicated that while the shear strength of the joints was

'_ more than adequate at elevated temperatures, that there a2_ared to be

: : _ lowering trends at sub zero temperatures (although joints were still

_ stronger than the parent material). Test data examined were for rela-

_ ' tively short aging times (18 days) however, and further experimental

_.:! work would be required before valid conclusions could be reached.

_ _ Other materials evaluations were concerned with materials to

be used as supportieg structures for the sail film. Graphite-polyimide

.... composites were selected for all the major structural components of the

_o,_ Heliogyro. These include the tubular truss center body, blade retention

structures, battens and tendons. The tendons would require high tensile

o strength fiber, e.g. HTS, Celion 6000, Thornel 300 or Modmore II. The

_ ......... other components require high modulus fiber, such as HMS or GY'70.

Because of its superior high temperature properties NR-150-B2G was

i selected as the preferred polylmlde, although some problems were anti-

_: cipated with regard to reproducible curing. The only critical environ-

_ ' _i mental condition was believed to be the temperature profile to be

0 ' expected during the mission. Analyses indicated that tllehighest tran-

, '_°.ii: sient temperatures (_320°C) would be encountered in the hub structures.

.... Therefore the use of NR-150-B2G would be mandatory. The battens would

r be covered with heat shields, so the maximum estimated temperature

i would be about 260°C, which would allow the use of other polylmldes.

The maximum temperatures for the tendons of 224°C (normally), with

o i_ excursions to 245°C for a total of 96 hours allow a substantial safety

margln.

I 2-5
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'_ The feasibility of producing I mil tape for the edge tendons

was established. The tensile strength would allow a safety factor of

2.5 at the start of the HCRM, falling to _ minimum of 1.2 after progres-

_ sive micrometeoroid damage based on a prevailing conservative meteoroid

model. It was also determined that production of the tubular structures

, would be feasible.

t.i ,,o

/_

,,?

"_,,o

!.
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Chapter 3

..Fi_ SAIL FILM MATERIALS REQUIREMENTS FOR HCRM

With the discovery of a rendozvous trajectory for a HCRM,

JPL began an intensive study of the potential readiness of Solar Sailing,

The assessments of this study were positive and an advanced technology......i

° development program was initiated in November, 1976. The development

" effort included the following considerations:

;: (a) Sall materials'o

:_ _i, (b) Sail size, established by mission performance (e.g.

....",i'_< characteristic acceleration, readiness date, etc.)

(c) Weight and storage constraints imposed by Shuttle bay

'i_ _':! capabilities and spacecraft component weights

.... (d) Materials (Sail film and other material weights)

.... (e) Operating temperature limits - reflectivity of the
_z-_ ?

.... sun-faclng surface, space environment survivability
e

and manufacturabillty

:,_ Figure 4-7 gives the equilibrium temperature vs heliocentric
_,C

distance of vehicle materials for various values of emlttance. It is

_'!._,_ readily seen that the temperature limits of many polymers would be

' '_i exceeded as the heliocentric distance shortens for certain estimated

_,. parametric values of emittance te.g. the emittance of some films were
v

: estimated at 0.2 to 0.3). The initial best estimate in November 1976
_,.%

'. for the emlttance of a polylmide Sall film was _.3 which corresponded to

an equlilbrlum temperature of 370°C (beyond the design limits of the
-!

_ material) at a heliocentric distance of 0.3. Through improvements in

thermal control technology, it was later posslbile to decrease both the

heliocentric distance and the Sall equillbrlum temperature by the time

of the July 1977 technology review.

The combination of the desired spacecraft performance para-

. meters and mission environmental requirements dictated an initial set ,

' of functional design requirements for the Sall film material.

3-I
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o

Although two configurations for Sail design were initially being con-

! sidered for the program, the Square Sail was dropped as a candidate

: for the Halley mission in May 1977 as a result of a preliminary design

analysis at JPL, and the Heliogyro Sall was selected as the baseline

design concept.

r: With respect to the Sail film materials however, the type

of Sail configuration played a lesser role in determining functional

design requirements than with the maintenance of properties during pre-

.... launch, launch and deployment. The latter appeared easier to achieve

" with the Hellogyro. The primary environmental criterion was the high
o

thermal radiation during the near-sun cranking orbit; other environ-

.... ments of significance were UV and high-energy radiation as well as

_iiiii chance micrometeroid encounters.
o

i,

°/ 3.1 FUNCTIONAL DESIGN
oo

o,

The mission profile for Halley was based on certain Sail

.... performance parameters that were, in turn, based on desired Sail film

_ material physical, thermal, optical and electrical properties. For

_° example, at the time of the technology review in July 1977, _he maximum
o_..

allowable area density for the basic film without coatings, ripstop,

_ _ etc., was calculated to be _3.0 g/m 2 to maintain desired spacecraft

°.... velocity and payload, capabillties. Early program requirements were

_:" 3.b g/m 2, which was reduced as other program requirements grew. This

• meant that if a material such as duPont's Kapton H film were used (with

a density of 1.42 g/cc) it would have to be a little less than one-tenth

": mil (_2 microns) thick to meet the 3.0 g/m 2 requirement. The minimum

thickness Kapton film commercially produced was over three times this

• thickness (7.5 microns).

_ _ The thermal requirements for the film were also severe. As

i earlier indicated, calculations predicted that the temperature of

aluminized polymer films would reach approximately 370°C during the

0.3 AU solar distance cranking orbit (assuming _ s for the aluminized

side as 0.16 and an emlttance of 0.3 for the back side of the fi]m). At

3-2
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:_ these temperatures Kapton polylmlde appeared to be the only possible

polymer candidate and even it looked very questlonable when considering

the four year duration of the mission wlth extended times at 0.3 AU.

The early optlcal and electrical property requirements for

the Sall film dld not appear as difficult to meet. A total reflectance

i value of 0.85 for the metallized fllm surface appeared to be achievablv

as dld an electrical resistivity of 106 R/square.

_ Sall fllm mechanical properties were dependent upon the Sall

configuration. For the Square Sall (which was considered the most

stringent of the Sail design concepts wlth respect to the loads on the

film), these were as follo_s:

(a) Tensile Yield Stress = 0.2 psl minimum

(b) Elastic Modulus = 43,000 psl minimum

5 i

.I (c) Bend Radius = 0.002 In* maximum

i
....i (d) Rip Stop = 0.5 ib**

i 3.2 MAINTENANCE OF PROPERTIES

o

_ ; 3.2.1 Pre-launch

During the Sall film development effort, there was llttle
_'

: analytical time devoted to determining the pre-launch mechanical

requirements which included fabrication and handling stresses.

The reason being that these would be dependent upon final

decisions on processing methods employed, stowage configuration, and

spacecraft design. Since the Hellogyro Sail configuration was selected

in late May Ig77 to be the design, these parameters had not been suffi-

ciently defined at the time that work was curtailed on the program

. *Bend radius wlthout creasing
**Minimum force without rip propagating through rlp stop.

3-3
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to allow much effort in determining pre-launch conditions. A quick

assessment revealed that there did not appear to be any significant show

_, stopper type problems with the individual Sall blades of the Hellogyro.

3.2.2 Launch and Deployment

O

The same was the case for launch and deployment loads. Pre-

liminary analyses indicated that the magnitude of these loads was within

.... the limits of the mechanical property requirements that were established

o._,., ea_lier for the Square Sail.

3.2.3 Mission Environment

oo

o

Activity directed toward the mission environment was analy-

___} tica], in nature and was based on the projected mission profile. Con-
e [

sideratlons were given to the following:

...... (a) Charged Particles - A primary concern at the beginning

of the mission was the possible degradation of the

_o_"_". thin, basic film structure or its reflective coating

- due to impact of energetic charged particles. Ini-

% ° tlally, of course, the trajectory and the radiationn

environment were unknown and an effort was undertaken

_ _ to define important components. The major sources of

= ,.. the charged particles were assumed to be:

(I) Earth's Radiation Belts

(2) Solar Wind

°_ ° (3) Solar Flares

(4) Cosmic Rays

For the Solar Sall to be feasible, it was mandatory

_'i that the radiation exposure of the f_Im be kept below

i

damage levels for polymers. These damage levels were
_-- only approximately known from previous re_ctor tech-

nology. If the polymer film were to be e_posed to

_-- higher radiation dose levels than initially _redlcted,
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thicker metallized protective coatings would be

•_ required to reduce the level of radiation exposure

,_ , to the polymer.

The approach used in this portion of the mission environ-

,:," ment study consisted of the following:

_o o': (i) determination of the total fluences and peak

'_ flux of charged particles as a function of
x

: energy over the 4 year mission.

r (2) computer simulation of the corresponding

: ' nuclear particle dose profile through the

_ basic film.

(3) determination of the Sail requirements based

_ upon trade-off results of the above theoreti-

_,,o. cal data.

= _7:oi Simultaneously, a combined environment test program

to irradiate potential film candidates was undertaken

to confirm the reality of the degradation over a

i o_: range of interest

(b) Solar Intensity - In addition to the protons, elec-

_° irons and meteroids found in space, the Solar Sall
o

materials will be exposed to electromagnetic radia-
o,"

tions from the solar surface. It was found desirable

'_ to have the Solar Sall go into the sun as close as

possible for the following reasons: (i) maximum thrust

for the Sall is achieved (2) the orbltal periods are

, less and (3) energy changes can be acquired at a faster

_:_ rate• Early mission trajectories took the spacecraft

into a heliocentric distance of 0.3 AU, which, as ear-

tier discussed, appeared to be the temperature limit

-z for the materials. This was tater reduced to 0.25 At'.

The Sail, in order to achieve rendezwms with Halley,

must completely tnrn ("crank") its orbital plane so

,_ that tile spacecraft flies retrograde, as does the

, comet. Thus, tilt' term, "cranking" orbit was coillt, d to

"t-5
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describe the operation where the Sail cranks over theF_] "."I,'t

• solar pole for an approximate 400 day time period to

achieve the proper retrograde position and character-

_ istic acceleration.

o

The electromagnetic spectrum of the sun consists
o.....

_ ; _ primarily of the following major components (i) Ultra-

s-...: violet, (2) Visible and (3) Infrared radiations, and

is relatively constant for a fixed solar distance.

_"-' The intensity of all three components vary inversely

_ as the square of the solar distance and, in the crank-

_ _?s ing orbit (0.25 AU), is 16 times that at i AU. Outside

the Earth's atmosphere, the solar constant is 1.98

...._ _.... calories cm-2min -I, and, therefore, the intensity at
_'_ --_ -2 -i

'- ' ° 0.25 AU is 31.7 calories-cm -min . Approximately 8%

__ _: of this value is due to the damaging ultraviolet compo-

- ....._ nent; thus the Sail film material must be protected.

The sun side coating must reflect most of the ultra-

i?_!i violet component to maintain temperature. The reflec-

___i;!_-_,_.i__ tor must be specular to maximize thrust; the coating

_._ must also reflect or absorb the UV component of this

.--- energy to protect the basic polymer film•

:' (c) Meteoroids - During the mission the external surfaces

_," of the spacecraft will be impacted by meteoroids

According to the present state of knowledge, meteoroids

_-o g/cm 3_-_ have an average material density of 0.5 and will

impact with a relative mean velocity of 32.6 km/sec.

o i Since very little information exists as to any pre-

....: ferred direction of the metecroid paths, particularly
l

i_-.,_,, in the vicinity of the sun, a conservative direction-

ality factor of 1 was adopted. As to the meteoroid

_: flux, which is basically inversionally proportional to

_ particle size, a number of models are existing, only

partially supported by measurements in the near-earth

region. On the basis of rather conservative flux

Ls
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models, the fluence in terms of particles/m 2 over

the mission duration was defined as follow§:

Integral Fluence
Particle Mass (Particles/m 2 of Mass

• M Greater than M)

i0-I0 4.6 x 103
o

_) 10-9 1.9 x 103

_i i0-8 5"9 x i02
=_°_: 10-7 1.3 x 102

....i/ 10-6 2.3 x I01

°" i.: I0-5 1.9 x i00

}

\i i0-4 9.8 x i0-2

. ! 10-3 5.4 x i0-3

10 -2 3.2x10 -4

i0-i 2.2 x i0-5%

o . i0- 6°_ I 1.4x

....o_ Figure 3-i identifies the integrated fluence as

related to particle diameter for the regime of

_',. interest with regard to potential damage, ranging from

...._ particle diameters of app. i0-I to 10-4 cm. Below thls

_ , range, particles are too small to cause significant

_ _ damage, while the encounter probability of particles

greater than 0.1 cm diam. is extremely low.
o

_ _... The extent and significance of the damage generated by

:_._ meteoroid impact depends on the configuration, the

_! material, and the functional characteristics of Indi-
\_. vidual components.

......_o The expected damage to the film may be divided into

'_"_ three modes:

: (i) Minute surface degradation by craters with a

. i. diameter of less than X/4.
O,
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,_ Figure 3-1. Misslon-Integrated Meteroid Fluence
as Related to Particle Diameter

....... (2) Penetration of the aluminum coating without

significant damage to the film.
':

_ : (3) Penetration or puncture of the fllm (and

coatings).

_' The fraction o_ the sail area affected by each mode is

Identified in Figure 3-2. Since the area fraction

o_ affected by all three modes is less tllan0.027%, the
....... reduction of reflectance and sail efficiency are

_ negligible. Penetration and puncture of the film
J

may be of concern in the case of a highly stretched

,, _.. fiIm material where it may cause tearing between rip-
stops. The tentattveIy seIected Kapton film Is con-fJ

•. sidered insensitive to puncture.

,i
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__. Figure 3-2. Effects of Meteoroid Impacts on Sall Film
!• and Affected Area Fractions

oi

.... i The majority of structural components is likewise

i Insensitive to meteoroid damage, due to appreciable
thickness and/or extremely low surface area. The

sole exception are the tendons (blade edge members)

o_ due to the combination of an appreciable surface area,

_ high stress and the use of unidirectional composite

material of low thickness. In this case meteoroid

1 damage is the primary design criterion, as discussed

r] in detail in Section 4.5.4.7.
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:" : Figure 3-2 Effects of Heteoroid Impacts on Sail Film

and Affected Area Fractions

_ The majority of structural components is likewisei

;i, insensitive to meteoroid damage, due to aporeclable

' I thickness and/or extremely low surface area. The

_ sole exception are the tendons (blade edge members)

...._ _ due to the combination of an appreciable surface area,

i high .stress and the use of unidirectional composite
'. material of low thickness• In this case meteoroid

_,_ Oamage is the primary design criterion, as discussed

| in detail in Section 4.5.4.7.
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.....I Chapter 4

TECHNICAL PROGRAM

o. •

':t. To achieve a Solar Saii design by August 1977 containing all

•'_:_i/l the technical advancements required for a HCRM, an intensive materials

technology development effort was initiated in November 1976. The pre-

: vious section on materials requirements for the Sail discussed the tech-

o o_ nical challenges that were involved. This section of the report will

I. deal with: (i) selection of the basic film material and the characteri-

i__ _ zation of its properties, (2) coatings and thermal control investiga-

!i_ill tions, (3) joining and handling studies, (4) Sail film system perform-

ance evaluations and assessments and (5) supporting structures for the
o_Oi

....._:_ Sail film. Work reported in the latter area is primarily devoted to the

= _°__"!}., Heliogyro since the design of the Square Sail had not matured to a level

_i_* where significant inputs were made by the materials team. The majority

i of the support structures technology concepts that were performed for the

Square Sail, was done by contracted efforts. (Refs. i and 2.) These were
)

°_{ aborted when the decision was made to pursue only the Hellogyro Sail.

o % ,.

i_.,:i 4.1 BASIC SAIL FILM
• j,

, 4.1.1 Candidate Survey

o,l

In order to meet the mission performance requirements, it was

mandatory that the weight per unit area of the Sail film be as low as

.... possible. Based initially on design considerations for a very large

_. area (_775,000 square meters) Square Sail, the area density for the

.... film (minus any coatings or reinforcing strips) was established at

_ i 3.6 grams per square meter. This number was subsequently reduced to

_i 3.0 g/m 2 when technology advancements made it feasible. Both the Square

: Sall and the ultimately selected Hellogyro design shared this require-.i
?

.... ment. Not only did the basic Sall film have to be lightweight, other

requirements imposed on it were that it be:

(a) optically smooth.

_,.. (b) capable of being coated with and compatible with

specular metallic and other thermal/optical coatlngs.

4-1
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(c) stable in the space environment (with appropriate

protective coatings) for long periods of time while

o exposed to high solar intensity and charged particle:!

....i irradiation

_ (d) temperature resistant (with appropriate protective

coatings) to withstand 11-16 times the solar intensity

on earth (0.3 to 0.25 A.U.) for 1-1/2 to 2 years.

• (e) available in sufficient quantities for manufacture,

• coating and assembly into a very large total area

(%1.6 million square meters) to meet the Sail produc-

= ._: tion schedule.

_" Table 4-1 summarizes the initial target technical require-r_

i ments tha_ were determined to be necessary for the basic film material

_ for the Hellogyro blades. As mentioned, the area density was later

g/m 2_ reduced to 3.0 . Using these requirements as a guide, potential
i "II .%

material candidates were surveyed and screened. This was a combined

• effort between the various NASA centers engaged in the program plus a

_: contracted study by the Battelle-Columbus Laboratories (under the direc-

..... tion of JPL). Early in the program (Jan. 1977), an industry conference

, o,_' organized by the New York Polytechnic Institute was held in Washington,

D.C. to develop technical strategy and recommend the most viable candl-
g

• dates. This conference included representatives from such companies as

duPont, Cellanese, Union Carbide, Monsanto, Allied Chemical, IBM and

Sheldahl. The results of the conference were very useful in the selec-

tion of candidate basic film materials that could be used for a HCRM.

%_ Initially all types of materials that could be made into

films were considered but, primarily because of the area density require-

ment, it soon became apparent that polymers were the best candidates if

i they could meet the thermal and space radiation requirements. Figure 4-1

shows the relationship between the film density in grams per cubic

•. centimeter and film weight per square meter for various polymers. The

only metal candidate that appeared to be practical from an overall

properties standpoint was aluminum and it's density (at 2.8 grams per

,_ cubic centimeter) was such that the film (or foil) would have had to be

4-2
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Table 4-1. Target Technical Properties of the Sail Film

A. Physical

.... 1. Area Density _ 3.6 g/m 2

2. Thickness Uniformity ±lOg
o

B. Thermal

• Thermal Stability range -130 to 250°C
'iv!;

Thermal Cycling Capacity 1600 cycles, 210-250°C
oo

C. Radiation

o ¢' :

° i. Metalllzed film must endure a total of 210,000
°_ Solar UV hrs.

r 2. Metalllzed film has to withstand a total of

: 2 x I0I0 Rads (SI)

": D. Mechanical
o

o .

: _.... i. Overall dimensional change between -130 to 250°C

. must be _1.5% (thermal expansion, residuali shrlnl_age, elastoplastic deformation)

s 2. Ultimate tensile strength 28,000 - 35,000 KN/m 2
"_ .. (4-5 Kpsi)*

_,_,_ 3. Tear initiation resistance

o_ %1.0 N/_ (350 ib/inch). Applicable during entire
_, mission.

%o-

._,_ *(actually encountered only during handling and unrollipg of

j.,. blades). During flight the load is %2 psi.

0.04 mils in thickness to meet the target area density. At these
?

°: ultrathin thicknesses, the durability and crease resistance of metals

_ are very questionable. Table 4-2 lists density, weight and thickness

,._--_2.i considerations for some metals.

...... "1

''01')E$' The major difficulty anticipated with polymers for a Halley

;.... Mission were their repnrtedly poor (for this mission) radiation and ele- _.

_ vated temperature resistance. Earlf predictions on the temperatures to
,>
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Table 4-2. Metals as Film Materials
, I

Thickness in

Weight of Film Per m2 Microns of

i of Thicknesses, gms Film at Which Melting

: Density the Weight is Point

Metals gm/cm3 i_ 5_ i0_ 4 Em/m2 oc

Lithium O.53 O.53 2.7 5.3 7.5 180
!=

_,i Magnesium 1.74 1.74 8.7 17.4 2.3 650

! Beryllium 1.85 1.85 9.3 18.5 2.2 1277

_ Aluminum 2.7 2.7 13.5 27. 1.5 660

° : Copper 8.96 8.96 44.8 89.6 0.45 1083

Silver 10.5 10.5 52.5 105. 0.4 961

< Gold 19.3 19.3 96.5 193. 0.2 1063

..... coated films during a 0.3AU cranking orbit were of the order of 350°C.

This was beyond the range (for continuous use) of practically all
: /i

o polymer films. Kapton type polyimides appeared to be the only material, ' with any possibility of meeting this constraint. However, data was very

° limited on its long term temperature stability, and also, there were

further unknowns about its space radiation stability for the intended

mission. The general chemical and thermal inertness properties of thisn°

polymer however, were superior to most of the other candidates.

__ It was not until a breakthrough occurred in obtaining
o

:° promising emittance coatings for the films, thereby allowing lower oper-

ating temperatures when the Sail was in near sun orbit, that it actually

.... appeared feasible to employ polymers for the Sail application. Another

i contributing factor were studies that indicated feasible methods to join

_. Kapton (which was known to be a difficult material to bond).

_ The aforementioned coating and joining technology develop-

. ' ments are discussed in subsequent chapters.

Concurrent with the development of coatings that permitted

" the operating temperatures of the Sail fllm to be kept under 250°C at a

_-_ heliocentric d_ tance of 0.3 AU, a decision was made by Mission Design

° 4-5
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to decrease this distance to 0.25 AU to further increase Sail performance

and to provide more margin in mission launch parameters. At 0.25 AU the

....:: operating temperature of the Sell film (with a suitable emissive coating)

would be of the order of 250°C, which was still within the operating

: temperature range of several polymers. However, testing was performedo
o

up to, and above, 300°C to evaluate feasibility of missions closer to

the sun in the event weight, reflectance or other goals could not be

r achieved for the Sail; and to demonstrate margin.

/

4.1.2 Assessment of Basic Film Candidates

Conceptually the Sail film could have been constructed of
!r

either a single monolithic component or a composite material, e.g. a

_, film reinforced with an integral scrim or webbing. Thus, initially, the

following matrix was designed to verify the various possibilities (see

Table 4-3).

_,} The results of such an approach were that both monolithicu

and composite film material appeared technically feasible. However, on
[:

the basis of current technology and availability, the monolithic concept

appeared more practical and expedient. The various organic films and

fiber formers, inorganic fibers and composites that were considered are

tabulated in Tables 4-4, 4-5, 4-6, 4.-7, and 4-8. The biggest technical

challenge for a fiber reinforced scrim or web appeared to be the achieve-

- ment of a good bond between the scrim and the matrix film. Material

o : incompatibilities existed between available fibers and candidate films,

'° .... e.g. thermal expansion differences and non-wetting characteristics.

_,, Therefore, attention was directed towards finding suitable

monolithic film candidates which could be screened wi_h L_up_LL tu thclr

_" ability to satisfy the requirements of the Sail. These requirements

included material properties as well as availability and manufactura-
i

..... billty. Methods for reinforcement of monolithic films were investigated

; separately and are covered under Joining and handling. The majority of

the commercial films that were identified were considerably thicker than

the initial nominal thickness requirement of 2.5 micron (0.i mil)

.... 4-6
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-" ,,_,. Table 4-3. I_terial Selection Approach

,,_. ,_. Inor- Org. Org. Inorg. Inorg.

_'_ }: Organic ganic Film Fiber Film Film
'_ ;,I

_i' Org....... _ + + + +
Film

Film Former + +

•i Org. -- _ --

'_ Fiber

{''_:l Inorg. + +
Film

°L _ Filament - -

.... Inorg.
ii Fiber -

,,:" + Indicates feasibility
, , ,j ,.

o-,_,r,, projected for the Sail. Only a few polymer types, e.g. the

-_.: polysulfones and the polyxylenes, were routinely produced in the ultra-

! {iI thin thickness range and these did not appear to demonstrate sufficient• elevated temperature stability for the Sail application. The various

oii films initially considered as potential candidates are listed in

o_i Table 4-4. lhe tabulation includes materials available commercially in

_oi: film form as well as those that are potentially producible in this form.

i

_o,'i 4.1.3 Selection of Primary Candidate Film Materials
0'

Because of the critical schedule for the sail program (which
i'

,:_. called for a HCRM launch l.n late 1981), the decision was made to concen-

trate on materials which most nearly conformed to or exceeded the tem-
9 '.

,: perature and radiation requirements and could also be most readily
ou

r' . developed iu_o the proper thickness range. One particular group of

_ ,,, polymers met these requirements the best. These were the thermosetting

_. and thermoplastic polymides typified by duPont's Kapton H, Upjohn's 2080

and Ciba Geigy's BIO0 and PIO0 respectively.

Discussions with duPont to interest them in directly produc-

ing their Kapten H film to the desired 0,I mil thickness were initially

" nonproductive. However, as the project gained more mo_,entum, duPont

:' 4-7
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Table 4-8. Composites
i +

- Remarks

. 1. KAPTON-type withKAPTON type Matching technology
"_ tape ripstops

_" KAPTON-type with BBB type Expansion Coefficient

.i tape rlpstops Mismatch

"_ 2. Parylene on PBI Paper Tear resistance
Adhesion

KAPTON type on Nomex Scrim Degradation

,_: 3. KAPTON with deposited metal Fabrication
_o ripstops Environmental Resistance

:_ Expansion Coefficientv_

o, 4. Polymer with Tear resistance

ii Handling/static
L.. a. inorganic mesh Expansion coefficient

b. include mlcroflbers Mech. properties
o

!. __ 5. Metal film with deposited

: metal ripstops Under investigation

= Mech. properties
6, Aluminum film on chromel scrim Electrostatic

Environmental resistance

Aluminum film on glass scrim

....'" agreed to a contract (under the direction of NASA-LARC) to pursue the

feasibility of sucn an endeavor. Their initial _ttempt at producing the

i-..... 2.5 micron (0.I0 mil) film resulted in material approximately 3.3 micron

= (0.15 mil) thick. However, they gained enough confidence from their

experience in this first run to predict that they could directly produce

_- film of the desired thickness in quantities to meet the Sall schedule.

Based on the foregoing, directly produced Kapton became the

prime candidate film material. As a backup, if for any reason duPont

should not have been able to produce the film, there were three options.

• Two of these included t_Toprocessing methods for reducing the thickness

....i of commercially available 7.5 micron (0.3 mil) Kapton: l) chemical

, etching and 2) plasma etching. The thlrd option was an alternate mater-

...... ial - Ciba-Geigy B I00 thermoplastic polylmlde. The advantages and dis-

._ _ advantages of the final four major candidates, according to ranki.ng are

shown in Table 4-9.
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The chemical structure of the two final candidates are as follows"

r _," CHEMICAL STII_J_.U..._

•
_=, II

0 0

:_ IITDA/DAPI _ O 0 ]° II II

_ H
..... ' 0 0

).

_;_ 4.1.4 Mechanical and Thermal Property Characterization of
_ Candidate Films

Subsequent to the screening of the potential fllm materials

which narrowed the candidates to two (Kapton and B100), an effort was

t.... initLated to more completely characterize their pertinent mechanical and

' _ thermal properties. This began with a thorough search of the available

literature followed by a testing program designed to provide required

_ missing information.
i[

! i_ (a) Literature Search

The literature search encompassed making contact with

! _ the manufacturers of the materials to solicit available

' data and also surveying the open literature for work

: by other investigators. Table 4-10 summarizes the
:

salient information that was obtained from the litera-

ture search.

" Initially, three polylmlde materials were under con-

; _ • slderatlon. Besides Kapton and BI00, UpJohn's 2080
: v

. thermoplastic resin was also a candidate. However this

J material did not withstand simulated space radiation

as well as the others (see chapter on Sall Film System

4-16



'- Table 4-10. Basic Properties of Kapton and BIO0 Polyimides

Property Kapton BIO0

I. Physical

• Density 1.42g/cc 1.16g/cc

• • Thermal Expansion Coefficient 2 x i0-5/°C 5.25 x i0-5/°C
• (Machine Direction) between-200 to between-200 to

i ...._ 300°C 300°c

o :

_, ,: 2. Thermal

= _ • Glass Transition, Tg 400°C 318°C

i • Service Temperature Range -270 to 400°C -270 to 300°C

(insitu)

t=

3. Radiation

_, Gamma Radiation No problem up Not known
...._, to 3 x 108 Rads
_, (si)

_ ._m,_ ..
UV Not known Not known

4. Mechanical

_: Tensile Strength, 17,500 @ 25°C 7770 @ 25°C

4 : newtons/cm 2 (psi) (25,000) (ii,i00)

11,900 @ 200°C 2730 @ 260°C

V (17,000) (3900)

_. I Modulus, 301,000 @ 25°C 252,000 @ 25°C

newtons/cm 2 (psi) (430,000) (360,000)

I 189,O00 @ 200°C 315,000 @ 260°C. (260,000) (450,000)

i= o Elongation at Break, _ 70 @ 25°C 10.2 @ 25°C

_"_ ! 90 @ 200"C 54.9 @ 260°C

_,_- Tear Initiation Strength, 0.2 @ 25°C

)_ ii I newtons/mlcron

_ 5. Water Absorption, % 2.9 2.9
I

mi
4

:! I
. o •

' I 4-17
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_' Performance) and also was found to require the use of

_ undesirable solvents (OSHA standards) in its manufac-

ture so it was not given further consideration.

J

"} (b) Test Program

The purpose of the test program for the basic film
I

material was primarily to obtain missing mechanical

i property data. This data was needed to provide design

information for the Sail. Th= properties measured as

a function of temperature are tabulated in Table 4-11.

_°,_i The measurement method employed is also shown. Some

• physical properties as a function of temperature, e.g.

_ thermal coefficient, were also measured.

The results of the measurements are included in
o

Table 4-12. The material used for these measurements

_i_o : were the direct manufactured 3.7 micron (0.15 mil)

K_?ton from duPont and the Ciba-Geigy 3.0 micron

° _! (0.12 mil) BIO0 polyimide. The BIO0 film was solvent

cast by the Peter Schweitzer Division of Kimberly Clark.

_ The strength data reported in the table are noted
_:

o_ decreases or increases in that particular property over

the temperature range through which the spectrum was

° ; tested.

'i 4.1.5 Manufacturing Requirements for Basic Film

, : Along with the various physical and mechanical property

_ requirements for the basic film, there were also requirements fo_ its

_ fabrication. The 2.5 micron thickness limit for the material was ini-

tially beyond the state-of-the-art for the most desired candldace, Kap-

ton H film from duPont. Thus it was very apparent that a great deal of

technology development was necessary to obtain candidate films of the

required thickness once that viable candidates had been identified

based on their physical, mechanical and space radiation properties. A

..... second cr[terla was the availability of the resin and its subsequent

_-18



Table 4-11. Mechanical and Thermal Property Measurements vs
Temperature for Kapton and B100 Fllm

,i Property Measured at Various
Temperatures Measurement Method

Static Instron Tester

=_: I. Tensile Modulus

: Dynamic Rheovlbron

2. Yield Strength Instron Tester

3 UltimatoTensileStrength InstronTester
4. Ultimate Elongation Instron Tester

ii_I 5. h_ongation at Yield Instron Tester
_//w-i

6. Stress-Straln Curve vs T Instron Tester
°.y ,.,

oe: 7. Tear Initiation Strength Instron Tester

8. Tear Propagation Strength Instron Tester

• 9. Creep Creep Analyzer

:: i0. Thermal Expansion Coeff Rheovlbron

ii. Thermal Transitions Rheovibron

g" 12. Shrinkage Dimension Measurement
7

-.j7 fabricability In sufficient quantities to meet the rigid demands of

the Solar Sall program schedule which called for a launch in late 1981

:°_"_ 1 (over 1.6 million square meters of coated film was needed for the total

_ '_ program). Because polyimides were identified as having the best poten-

°;': | tial for the Solrr Sail film material, a concentrated program was

--._._i: | devoted to assess the producibility of film from these materials. There

were two prime candidates, duPont's Kapton IIand C[ba Geigy's B lO0.I
: | For the Kapton (because of high manufacturing costs for the ultrathin

gauge film and to guard against the possibility that duPont might haw,

trouble making it) alternate methods for achievinR the ultrathin mater-

ial were investigated. These included plasma and chemical etching of

| readily available (and less costly) thicker film.
|

I 4-19
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•' Tabl,_ 4-17. Mechanical Properties vs Temperature (Bare Films)

BIO0

Property and Temperature Direct Produced (Made by

: Range Kapton Schweitzer)

I. Dynamic Tensile Modulus 73% decrease 74% decrease
;_ from -200 to 300°C

c_ .... 2. Thermal Transitions -90°C and +120°C -90°C and +160°C
% _,_. (-200 to 300°C

.....°; 3. Expansion Coefficient 2.5 x I0-5/°C M.D. I 5.2 x i0-5/°C M.D. 1
.... from -200 to 300°C

-_--i 3-5.6 x i0-5/°C T.D.2 5.8 x I0-5/°C T.D. 2
i= _i

_ 4 Ultimate Tensile 50% decrease 71% decrease;_.i:,_,.
#_-_ Strength from -60 to

280°C

'_: 5. Static Tensile Modulus 20% decrease 51% decrease
from -60°C to 280°C

6. Tear Initiation 60% decrease 40% improvement
_' StrengLh from -60 to

_ _ • 280OC

i__ S 7. Shrinkage

_' 8. Creep (AI/Cr* Instrument inaccuracy

i_:'i, metallized) prevents firm conclu-
'-_ _: 240 to 300°C sion but thus far no

_ noticeable creep has
been seen

o

!:

: lbi. D. - blachine direction

_'_,. 2T.D. - Transverse direction

_,'_ *Aluminum on one surface, %IO00A; Chromium on opposite s_rf_ce, %[25A.

4.1.5.1 Direct Manufactured Film. The first choice for a material and
o

manufacturing method was the direct solvent casting technique used to

prrJuce the Kapton H film. duPont has shown its capability in producing

3.3 micron film and a high probability of making 2.0 micron f£1m. An

estimated schedule for meeting the HCP_I schedule with the duPont 2.0

micron, basic film is shown in Figure 4-2.

:5 :"
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...... Figure 4-2. Solar Sail Materials Film Production for HCKM

=.---_;. The alternate material choice for the Sail film was Ciba-
i"

• Gelgy's B-IO0 polyimide. This resin can be made into ultrathin films by

:i_, both solvent casting and water casting techniques. Figure 4-3 depicts

_ the solvent cast technique. The feasibility of making 2.5 micron filmo:,_7

._ from the B-IO0 resin was demonstrated by P. J. Schweitzer Co. using a

combination of solvent casting and stretching. A similar schedule (to

the one done with DuPont) for delivering the B-100 film was developed

wlth Schweitzer.

_).

The water casting technique was tentatively explored by the

Midwest Research Institute, Minnetonka, Minnesota. Basically the tech-

nique consists of dissolving a polymer in a water soluble solvent and

casting the solution on a water surface. An ultrathin membrane forms

spontaneously as the solvent dissolves in the water. The difficult part

of the process appears to be in successfully retrieving the polymeric

film [tom the water surface without damage while maintaining the ability

k_
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POLYMER

.... ,"....:< /. SOLUTION

' -, CASTFILM
,- _LUTION

{ SOLVENT FILM

• i
/ i

; -' SURFACEPLATE(OR DRUM) TO RETRIEVALSYSTEM

_"r Figure 4-3. Solvent Film Cast Schematic.
_ I

,° to subsequently apply reflective and emissive coatings MRI was awarded

....._1"_" a small development contract to establish the feasibility of thls film
= _ = " i

:Y,,o_"? making process. A schematic diagram of a pick up system is shown in

'-_ ..... ,_ Figure 4-4. Successful, continuous runs ('_lOOm) of the Ciba-Geigy B 100

<"_- and P i00 films were made with thicknesses of 1.0 to 2.0 micron. The

;" fllm is retrieved on paper, from which it must be removed to metalllze

one side (one side could be metalllzed while on the paper).

4.1.5.2 Reduction in Thickness of Heavier Gauge Films. Backup

,, methods for obtaining 2 micron Kapton film included reducing the thick-

_, <L_, ness of heavy gauge material by plosma and chemical etching. The feasl-

_-'" -<:.. billty of the plasma etching method for reducing the 7.5 micron thick,

-_ commercially available Kapton film to 2.5 microns was established by the

°_;_ Surface Activation Corporation in work sponsored by NASA-ARC, (Ref. 3).

', . Chemical etching techniques employing alkaline solutions

were Investigated by JPL and demonstrated on a batch basis to be viable.

This method was employed to obtain a majority of the 2 micron thi_kness

Kapton samples for evaluation studies, Figure 4-5 is a plot of the
o >••

etching rate versus potassium hydroxide bath temperature for two dlffer-

ent solution concentrations.

4-22
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I JER CARRIER,

" .UTION & FIrM

i bLUTION RETRIEVAL•--_'"_i_i FliNt FILM SYSTEM

i "_i_1 SOLVENT

,i

g,i

SO ENT

%'._

;i= : t _

_ FLUID (TYP-WATER)

=_-,_ Figure 4-4. Wat=r Cast Schematic

There are several advantages to the chemical etching

o • process :

_" (i) readily available supply of heavier gauge Kapton film

c" (2) potential savings by utilizing lower cost, heavier

gauge film

(3) can serve as intermediate step for preparing surface
o

for metalllzatlon.

The limitations of the process that need to be worked

include:

_-Ir (a) initial control of the film thickness is presently

.... limited to +-10%.

_-?- (b) residual side effects to the basic polymer requiring

i additional treatments to the film

o i (c) methods for handling processed film to account foro'

: mechanical expansion

: (d) probable high facility costs.
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o_ Figure 4-5, Etching Rate versus Bath Temperature for Kapton Film

"d
o_ .....' Plans were in process to further develop both the chemical

: ._ ..

_ and plasma etching techniques through contracted technology developmento' _.

efforts had the Solar Sail program continued.

o

i7

k. _ , ,
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,_ 4.2 COATINGS AND THERMAL CONTROL

:_ 4.2.1 Background and Technical Requirements
!

The sun facing surface of the solar sail must be specular

and highly reflective to maximize the photon momentum impulse (force)

and must also be resistant to degradation by the solar and space

° _ environment for periods up to four years. The high levels of irradiation

are especially of concern because of the nearness of the approach of
c.....

• the spacecraft (0.25 AU) during its projected two year cranking orbit

•_ _.. around the sun (Figure 4-6).

:_ To maintain acceptable equilibrium temperatures for the

, oO deployed Sall in a near-sun cranking orbit, it is mandatory that the

_:: _i/_I+2 ratio for the Sail be low; e.g., 0.i to 0.2. This factor is

defined as the ratio of the solar absorbtance, _i' of the sun facing

side of the Sail divided by the sum of the emlttances of the sun

facing side (e1) and the back-slde (_2).

_ This is derived from the relationship:?

4 _S .
_,,:i TS = 4. e2 o

°' where:

_'" T = absolute temperature

_S _ front surface ahsorbtance

_iI_,i cI = front surface emittance

...._: e2 = hack surface emlttance

o = Stefan - Boltzmann Constant

G = solar intensity factor

With the parameters G, _, and <_being defined for a given condition

oo,_ either _i or ':2'or both, must be increased in order to decrease T.
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l _ i::. Figure 4-6. Solar Intensity Profile

o " The need for a low al/Cl+ 2 ratio for the Soiar Sail Is

_ illustrated in Figure 4-7 which is a plot of temperature versus

_, heliocentric distance with the _i/_i+2 ratio as a parameter. The

,, equilibrium temperature for aluminized 2.5 micron Kapton wlth an _i/gl+2

_" ; ratio of 0.42 is (from Figure 4-7) app_oxlmately 370°C at 0.25 AU, but

: o at this temperature Kapton becomes brittle and loses its mechanical

_.ii strength. Thus, it is apparent that the emlttance of the back slde of

• the Sall film, or possibly that of the front slde, must be increased.

The thermal aspects are not the only concern. The extreme

: _ thinness of the polymeric Sail material make it particularly susceptible

_':. to the degrading effects of charged particle and UV radiation. Therefore,

o,, the solar-side coating or coatings have to be of sufficient density to

: impede charged particles from the solar wind, absorb UV radiation, and

' be mechanically stable.

LI, '

o

i.

_j
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i ,_,,}L. Figure 4-7. Sail Film Temperature vs AU

..... Another requirement is that the coating system be sufficiently

low in electrical resistivity to dissipate the electrostatic charges?

built up in tl_.e sail film during the fabrication-through-development

....' phases as well as in space. The basic film being a dielectric, has

high electrical resistivity. The various requirements for the coating

are summarized in Table 4-13.
r

°

_' 4.2.2 Survey and Selection of Candidates:i

Using the foregoing coating requirements as a guide, various

: candidate coatings were examined. These coatings were divided into

two types: sun-side high solar reflectance coatings and back-side high

emit tance coatings.

.[

,1

o

i
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, Table 4-13. Summary of Solar Sail Film Coating Requirements

A. Physical

• / • Weight _0.45 g/m 2 (includes all coatings)

.. • Electrically conductive

I, • Provide protection to Sall polymer film from charged particle
° and UV radiation levels predicted.

o
i

_dl B. Chemical and Mechanical

.....' • Tarnish- and corrosion-resistant during handling, storage,
_. and pre-launch

_: • Good mechanical integrity over temperature range of -130 to

_ 250°C and during temperature cycling of 1600 cycles at
: 210-250°C.

oi,.

' D. Optical - Thermal

_ • High spectral reflectance (0.88) for sun-side over life of

mission to reduce thermal absorptiono

. • High specular reflectance component (0.9) to maximize solar
o _ thrust

olo • High hemispherical emittance (_2 ffi0.6) for the back side to

, r°, achieve the requisite low value of _i/el+2.

, _' }.

_': 4.2.2.1 High Solar Reflectance Coatings. A survey of the literature

revealed that aluminum and silver were the best reflective coating

candidates for the Sail application. As seen in Figure 4-8, silver has
=

,,,o,,_: a higher overall spectral reflectance than aluminum, but it has an

:2_-- abrupt transparent window in the UV region. This window would allow

> UV radiation to penetrate and possibly degrade the underlying polymer

' film. Other disadvantages of silver are its relatively high density

(3 times that of aluminum), high cost and its susceptibility to
o

• tarnishing in the prelaunch environment. Combinations of silver and

' aluminum appeared attractive; however, tileneed for a protective over-

coating for the silve _ was still present, and the co_t was high.

i

In the area of what would be available on a commercial basis

• in reflective coatings, TRW made a survey of aluminized films that they

......: had procured over a recent three year pt, iod (primarily for thermal

4-29
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..... Figure 4-8. Spectral Reflectance of A1 and Ag

o • o..

control applications) where quality control records had been kept of

°> ' solar reflectance values. The data (shown in the histogram in

41 ...._ Figure 4-9) indicated that commercially applied vapor deposited

aluminum coatings yielded large percentages of solar reflectance values

_°_ in the range of 0.88 to 0.91. Based on these data, a criterion was
o .

o

established for a minimum spectral reflectance of 0.88 for aluminized

" . coatings.

,j,,

,,, Preliminary calculations of the necessary thickness required

for the reflective coating to provide UV and charged partiale protection

revealed a minimum of i000_ for aluminum. Later computer simulations

: of the absorbed radiation dose over the HCI_ showed that ii00_ would

,, be necessary. This is discussed in the section on sail system perform-

ance. Figure 4-10, which plots film thickness am a function of optlcal

transmittance for aluminum and silver, illustrates that silver must be

.... applied thicker to achieve equal opacity.

I

4-30

......_._.... _............. ._..r._, " 11 III I I II I I I - i I II II I II - ' '



_. i̧

i

720-9
?

o.

10

t_

EL
O

t_J

' z 5

,(,

o

r.i 85 86 87 88 89 90 91 92 93 94
REFLECTANCE

o

,i"_ Figure 4-9 Solar Reflectance of Commercially Aluminized Kapton Film

During the course of tile Investigation, several candidates

for protective overcoats for the reflector were Identified. These

,_ included:
o

i: • MgF 2 • AI203

• SiO • In/Sn 0
r" X X

Such coatings need the following characteristics:

_-_.i. • Non-absorber of solar energy. • Non-degradlng

_. 4-31
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° Figure 4-10. Tran_mittance-Coating Thickness Relation of Ag and A_
o

• Non-generator of damaging secondary radiation

...... • Compatible with reflector coating

! • Mechanical and chemical integrity

Most of the work performed was in ion plated coatings.

However, at the time that effort was discontinued on the program, it had

not. been clearly determined if overcoats would be required.

L 4.2.2.2 High Emittance Coatings. A number of approaches were con-

_i sidered to increase the Sail emittance. The major materials combina-

tions are shown in Figure 4-11. The coating thicknesses shown are

' illustrative and varied with coating material. The duPont polylmlde film,

Kapton, is shown as the polymer film materla] since it was the baseline

concept and was used for the great majority of samples and tests that

! were performed in this part of the program. Tests were conducted on

_ 2.5 micron or thicker polymer film. Later in the program, mission

design requirements dictated change to the thinner 2.0 micron Kapton

-__1 _" film which, at that time, appeared feasible for duPont to manufacture.

,., 6-32
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"-': Concept (a) is the simplest (aluminized Kapton). As mentioned

__.__i previoualy, the emittance sum, £1+2' is too low to prevent high filmtemperatures and thus limits the vehicle solar approach.

o

'i' Concept (b) _zas to introduce a layer between the Kapton and

aluminum with an electrical res_stlvity higher than that of aluminum,

: since from the Hagen-Rubens approximation c 'u where p e is the elec _

trical resistivity. Several high-resistivity metals were considered for
o-

this application with chromium and nichrome alloys being preferred for

their stability and availability.

_= Concept (c) was to introduce absorbing-emitting material in

. the form of a thin metal layer located one quarter of an emitted wave-

length from the opaque metal reflective coating. This concept capitalized

:' on the fact that the Kapton base film was a partially transparent dielec-

tric with the requisite thickness. The infrared interference system so

• constructed enhances the emission. The absorbing maL-rial must be present
,<

in sufficient quantity to absorb or emit, but not so thick as to become

a reflector and hence a poor emitter.

° ' Concept (d) was the same basic idea, but with a thicker

semiconductor for the absorber, because the thickness would not be so

..... critical.

_- Concept (e) was carbon in place of an oxide semiconductor.

Concept (f) is related to Concepts (c), (d), and (e), but

the absorbing material, carbon, is distributed throughout the Kapton

film to avoid _pectral tuning of the infrared interference effect. The

carbon also acts as a scattering medium to promote absorption by the

• Kapton.

Concept (g) was simply a combination of Concepts (b) and

: (c), and was felt to offer the optimum in benefit.

.:

,i
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i An overcoat on the reflecting side, Concept (h), is widely

used to increase emittance of evaporated films and solar cells. How-?,,q

ever, it requires a relatively thick coating and is subjected to theh;

severe solar environmental conditions.

r_ Concept (f) is based on the addition of fillers (e.g.,
o

carbon black) to the base polymer. Such fillers to the basic film would

also serve to increase its UV resistance. As with the reflective• coating, the resistivity of the backside coating must be reasonably low

(R _ 1010 ohms/square) in order to dissipate static charges. This
I

o .ii requirement made it difficult to consider fillers as the only means of

_ increasing emittance. Therefore, the major effort was concentrated on

_..._ coatings.

t" 4.2.3 MEASUREMENTS
|

_I The need for concepts to increase the emittance of ultra-thin

= Kapton film was initially deduced from extrapolated data, since there

_! was no thin material available for measurement. Coatings development
=

'_ and testing was actually initiated using 7.5 micron Kapton before pro-

cessing techniques were developed to produce chlnner gage material.

,_ As the program developed and more representative sampie_ were prepared,

more detailed thermophysical property measurements were made.

o

• I 4.2.3.1 Sample Fabrication, Nominal 2.5 micron Kapton H films

_ _: were made at JPL by etching thicker (7.5 micron), readily available

material in a sodium hydroxide bath as discussed in 4.1.5.2. Generally,

,i there was some slight variation from specimen to specimen in terms of

_'/_/ total thickness, but these were inconsequentla] as long as they were
identlfi_d. Vapor deposited L_oatings were applied to the samples by

TRW, Opti,_al Coating Laboratories, JPL, Keim Pre<_islon OptIc_s, and

_, Dyne Optics. Ion plated coatings wer,. p .pared by Endtlrex Corp.
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...._ Since coatings were applied under both laboratory controlled

and commercial conditions, there was some concern as to the accuracy of

..... the reported thicknesses and quality (e.g., purity) of the materials

_ being applied, All vapor deposited coatings applied at TRW were

accompanied by thickness calibration specimens which were coated

_ simultaneously, overcoated with aluminum and then measured using a

Varian 980/4000 interferometer.

_:, Carbon-filled polyimide samples were prepared by NASA-LaRC.

A solution-cast film of a Kapton type polyimlde was produced with a 10%

_:_ : by weight carbon black loading. This sample was subsequently front

_i_%_° side aluminized and back side coated with i00_ chromium. Additionally,

_--, some samples of protective overcoats for reflective coatings and a

_i_i duplex coating of silver over aluminum were prepared by Endurex.

'- 4.2 3 2 Measurement Techniques. At the start of the testing, all

emlttance data were taken using a Gier Dunkle Emittance Inspection Device,

_ Model DBIO0. Because this device yields a near-normal measurement of

the infrared reflectance, correlation was necessary with the more
,j

accurate (but more time consuming) Calorimetric Hemispherical Emittance

, Device or with a Paraboloid Reflectometer which measures near normal

o

_ spectral reflectance. Examination of the data revealed that the DBI00

consistently gave results that correlated well with the more sophisticated

== _ • methods. Thus, tileDBI00 was employed for screening candidate emittance
o /

• coatings, and the more complicated calorimetric and spectral measurements

were reserved for those coating systems that appeared the most promising

and for which more thorough data compilation was desired.

'._ The devices used to measure thermophyslca] properties are

. described as follows:

_' _, (a) Solar Reflectance/Ahsorptance

Values of near-normal directional spectral
5'

' reflectance at wavelengths from 0.28 to 2.5 microns

were measured using a Beckman DK2A Spectrophotom,.,ter

with an I'dwards, eL aI, _-type integrating sphere

4-30
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reflectometer. These data were then integrated over

the Thekaekara 2 solar irradiance spectrum to obtain

values of solar reflectance. Values of solar absorp-

_ tahoe were obtained by subLraeting values of solar

_! reflectance from unity, since solar transmittance

,_ was zero.

_. To determine effects of elevated temperature on

i the solar absorptance, another test was performed.

Samples were mounted inside small fused silica "test

_i tube" vacuum chambers attached to a small aluminum

..... disc to which a Kapton/nlckel foil heater had been
:, f

: bonded. The temperature was monitored with a thermo-

, :_: couple while the sample was heated to the test

o temperature, in vacuo. The sample, in its evacuated

.' holder, was then inserted directly into the integrating

°" sphere reflectometer, where directional reflectance

:_' of the sample was measured. In order to account for

:_ any unexpected contaminant deposits that might accrue

on the glass during the test, the sample was mounted

in such a way that it could be moved to allow the

,_il i00 percent beam to pass through the glass tube.

The scattering characteristics (contributing to

L_I loss of specularity and therefore Sail thrust) of the

reflected energy from the Sail material were also of

_ concern. A series of measurements were made in an

,'i attempt to quantify the specular reflectance of a JPL-

supplied "benchmark"* film material was measured with

: the TRW bl-directional reflectometer shown schematically

in Figure 4-12. The angular nomenclature used is shoal

, in Figure 4-13. The measurement was made at 0.6 microns

_" (which is near the peak of the solar spectrum). Approxi-

'; mately 35 percent of the solar spectrum lies below this

"" wavelength. This particular wavelength wa_ selected as

:i

- *The "ben,:hmark" film system as defin.d henceforth in this report
• consists of a 2.5 micron (0.1 rail) K._toa film with 1000% of A1

_', as the reflective coating and 125A of Cr as the emissive coating.

• 4-37
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i Figure 4-13. Geometry of Radiation Incident ando

_-_-i Leaving a Differential Areao

o,.- a conservative single point to measure, since at longer

_i wavelengths the surface of the material would be more
°.

° . specular.

_:° The sample was mounted in a special holder,

-_--.-; designed to place the film in tension and maintain the
'i

surface smooth and flat. The amount of tensile force

oo" used to accomplish this was not measured, but was

_ assumed to be similar to what might be obtained on a

o- Sail blade segment. The measured values for solar

': absorptance and near-normal emittance of a]umlnized

.... material taken from an adjacent portion of the same

coated film yielded values of as = 0.12 and CQ = 0.01.

-'_: These were Oaken for reference purposes.

o ,. In another test to determine the degree of

.. specularlty of the uncrinkled aluminized film, minor

• 4-39
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.. modifications were made to the Integrating Sphere

Reflectometer. The area of aperture opening was

o_ effectively increased through the use of circular
i

blank masks on the inside wall.
t)

Then the decrease of the diffuse reflectance

component (Rd) was monitored as a function of the

polar (1/2) angle of the reflected energy. For

nominal measuring applications this polar angle is

; 5.3°. With the masks the angle was increased to 8.5 °

='_ and then to 10.6° . At these angles, the diffuse

i _ reflectance decreased from an initial reading of
_ --" 0.227 at 5.3° to 0.035 at 10.6°;

i_....._ (b) Emittance Inspection

!_..... The Gier Dunkle Instruments Model DB-IO0

_ _ Infrared Reflectometer 3 was used to determine the

o_ _ emittance of several film surfaces. This instrument

was calibrated using vacuum deposited gold and 3M

.... Velvet Black Paint as reference surfaces. The gold

..... surface has been measured relative to a National

Bureau of Standards vacuum deposited gold standard and
o

_ found to have a near-normal infrared reflectance of

o_ 0.990. The 3M Velvet Black has been measured by a

o variety of techniques (Ref. 4-16) and found

!° to have a reflectance of 0.080.

-_- (c) Emittance Using Directional Spectral R_flectance

_: ii Values of near-normal directional spectral

reflectance at wavelengths from 2.0 to 26 microns werei

o ,/ measured using the TRW Paraboloid Reflectometer 9.

These spectral data were then numerically integrated

• over the Planckian 80°F Black Body irradlance curve

_: to obtain the reflectance of the material to an 80°F

black body source. These integrated reflectance

values were then subtracted from unity to obtain near-

normal 80°F emlttance.

o
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: (d) Hemispherical Emittance by Calorimetric Techniques

Determination of values of hemispherical emit-

: tance were made using calorimetric methods taking due

,_/ account of the inherent errors 6. Two 4 inch by 4 inch

pieces of the metallized films were bonded to 4-inch

• square heater/substrate assemblies, and the electrical

power required to maintain the specimen at specific

...._: temperatures while in an evacuated bell jar with

_ liquid nitrogen-cooled walls was metered.
o

4.2.3.3 Thermophysical Property Data

_.'f!

!

° i 4.2.3.3.1 Solar Absorptance/Reflectance. The solar absorptance of

aluminized Kapton was found to be essentially independent of temperature

over the range 20 to 285°C in vacuo. Both smooth and crinkled samples

were measured with the results summarized in Table 4-14. An interesting
o

,i" phenomenon which appears in the spectral data is a decrease in the
i /"

characteristic 0.8 micrometer absorption band of aluminum at the higher

_'_ temperature.

_'_ The specular reflectance data presented in Table 4-15 illus-

. _ trates that the aluminum coated, smooth, Kapton surface was strongly

specular: at small angles 5 degrees off the specular angle the relative

reflectance is down 3 orders of magnitude. _ata for in-plane incidence
[ '

is shown in Figure 4-14. This Figure is an expanded polar plot of the
,j o

i Z data. The surface normal of the sample is indicated by the n symbol.

°i All data was taken with the incident beam I0° off normal (in the region

1 -20 to +7°, the source obstructs the reflected beam measurement cannot

_ ! be taken). At -20 and -30°, however, the measured signal was less than

_ 0.O01% and could not be measured accurately.

Data taken out of the plane of Inclrznce (_2=+90°)
indicates

_ that there is actually somewhat less side scatter out-of-plane. 'the

_i=i0 °, _2=I0 °, _2=90 ° point, for example, could be compared to the

_1-10 °, _2-20, _2=180 ° point. The in-plane lO°-off-specular value is

, 4-41
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Table 4-15. Relative Bidirectional Reflectance Data for
Benchmark Solar Sail Material

.... ' ¢i ¢2 el e2 P-%

:. 0 180 -i0 ° -30 <0.001
i".

°: -20 <0.001
o

"_ +7 0.38

'.. 8 1.1
i,

...._: 9 6.6
/i-

:io i0 i00,00

_ ii 11.4

.... 12 i.86

12 13 0.51

_.:_ 14 0.21

i. ,. '_ 15 0.21

:- % !i.
: 20 0.018
L

25 0.006
o

!

_ : 30 0.002

0 90 -10 i0 0.003

2O O.0015

" 30 <0.001

.i
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0.18 percent, while the out-of-plane lO°-off-specular value is 0.008 per-

cent 20°-off-specular values are 0.0020 percent and 0.0015 percent in and

, out-of-plane.

.... The data for the other test for determining the degree of

_ specularity of uncrlnkled (smooth) aluminized Kapton is shown in Table

4-16. From these data, a preliminary value for the specular reflection

_,_ coefficient of aluminized Kapton was estimated. The value of 0.98 was

calculated based on the three measurements and the following basic

,,,,._ assumptions.

(i) specular reflection is a function of surface roughness

only

(2) both the slope of the infinitestimal surface area of

°! the membrane and the reflected light intensity can be

described by the same distribution function

i!'" Two different distribution functions were applied to process the data;

the cosine and the normal. Both approaches produced the same value for

': the specular reflection coefficient that is used for calculating the

thrust imposed on the Sail film by the photon impulse (momentum).

/ 4.2.3.3.2 Emittance. Emittance data for selected samples is presented

in Tables 4-17 to 4-19. The nomenclature used to describe each sample

is based on the sketch at the rear of the table. Table 4-17 presents

• data for several thin polymer films. The s_atter in the data is

believed to be the result of variations in film _hickness. Sample A4

: was measured calorimetrically to verify the DBIO0 readings and to deter-

° mine temperature effects. The calorimetric data at 38°C agreed quit_

'_ well. Sample A2 was measured spectrally in the TRW Paraboloid Reflectom--

eter and once again the data agreement with the DBIO0 was very good.

The conclusions from these measurements: (i) the ultrathln polymer films

(_2_m) alone do not have high enough emlttanee to meet the requirements

for a 0.25 AU mission, and (2) all emlttance measuring techniques gave

similar results.

Table 4-18 summarizes data for thin film metal enhanced

films of configurations Figure 4-]I b, c, aud g. Chrome, 50,'50 nickel-
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Table 4-16. Decrease in Diffuse Reflectance as Function f

. Polar Angle Increase
O.

:. No Mask Small Mask Large Mask

: Reflectometer Aperture (i" square) (1.12" dia.) (1.4" dia.)

. Polar angle for Specular 5.3 ° 8.5 ° 10.5 °

_ Reflectance Measurement (=)

_ Solar Reflectance (r) 0.864 0.864 0.864

Diffuse Reflectance (Rd) 0.227 0.098 0.035

rI Normalized Specular 0.737 0.887 0.959
_" Reflectance (Rs)

i:

'_ chrome and 80/20 nickel-chrome were used as the absorbing layer. The

resistivity metal (Cr) under aluminum did not greatly increase the emlt-

°:: .-- tanee, and (2) an absorbing layer of nominally 100A of chrome or nichrome

,,_ on the backside of the Kapton did nearly double the emittance. Fig-

o_ ure 4-15 presents measurements, made early in the program, that estab-

',. llshed the feasibility of concept (c) and provided the selection of

,.°: optimum Cr coating thickness. The hemispherical emittance of samples A4

_ and CR9 was measured to verify DB i00 readings and to determine emittance

_,_o at elevated temperatures. Figure 4-16 shows a value of 0.62 at 280°C

o: for CR9 and 0.34 for A4.

, Table 4-19 summarizes data for Indlum/Tin Oxide and carbon

!_ ' coatings on Kapton. Carbon coated samples did not yield results compar-
o ,

• able to the metals tested. Indium/tin oxide coatings were comparable

_o ii to Cr coatlng_, but required much longer deposition times to achieve

i _'_ the thicker coatings.

_-o . Another promising method for increasing the emlttance of the

back surface was that of using a filler of carbon black in the base

re3in film. A solution-cast film of Kapton type polyimide, prepared by

NASA LaRC, that contained 107.by weight carbon black had a hemispherical

'._ emittance of 0.55. When IOOA of chromium was subsequently vapor

deposited on the back side, the emittance increased to 0.7. There

were problems, however, in manufacturing large w_lumes of film In th[:_
\'.

,_: manne r.
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Directioni_l refl_.,ctnnce d_itd for snmples A2 ;rod CR4

(Figure 4-17) shows the intorfL.ren_'_., braid strurture in the, infr_ired

_-_. whit'h ciltlst.,.'-; the incrca,_ed _'mittlmcu for tho chr.me-r_ated S_lllll_lt's,
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Figure 4-18. Resistivity of Aluminum Film vs. Tlme at 16 Suns.
Benchmark System, T %280oc, 10 -8 Torr.

estimated at less than 1,_/year. Stability tu sputterin K _lnd sublimntion

are therefore seen to be satisfactory.
b

:,= c_ "

i : _'f

•I : The ability of the coatings as a function of thiL'knes_ to.,

_: ,, protect tile polymer film from radiation ires not buen well established
.

A radiation profile is shown along with reaults t,f s_,me prulimimlrv

_' radiation testing tn the section of the report c,,verin_, syst_,m
Q

_ p*rf,_rmance, where it is sh_n,,n that llO0-1200A ,_f alumln,,n, is m._'t..,+s;|rv

o It, prot¢,¢'t the, sun-side dt the p,_lvmt, r lilln fr,_m t'V r;tdi,tti,,'l.

i: "Flit + m;lximum rt,sJ>+t ivitv nL.._,..4_+,lr\, t_, ,it+q_itl ,IF, ill),, ,111¢1 I+lllh-

o: Lurt' thrtnlgh st,lti,. bt|ildup w;t_; _;|]t'ttl,tt_,d tt_ !_,, .ti_tlt 1[) ll) ,,hm_,,',+qtJ.tr_..
o •

>J
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_" 4.2.5 Manufacturing Requirements
Oo-.

?

- Tim technical requirements for tlm Sail film coatings impose

o_-:," a different set of coating parameters for thin polymer films than ar_.
,!

normally empleyed for these applicatiux_s. As pruvi.,u_Iv m, ntio.cd, t.-

: _ afford protection to the fil.m from the s()lzJr wind and tl'.tr_lviolt.t radia-

: tion of the sp_.,ce environment, the refluctinr ._id_, m't,llli_.,_ti,), mtlst hu

_'' thicker than what is (:(_mmurciallv apt_lit, d t_, tl_in i)_,l,,'m,r filn_, _.._,.

ijl the minimum thick_ess for aluminum ,*n tl_, rutl_.ctinl,, _i,i_. ,,1 th,, .S._il i_

o

• IO00A. Optical measurements l;itt, [11 pror.r._m indi,.il.ud th,lt ,i11 itl_rt',l,;,.'
o

to llO0 - ]2()OA ml_ht bt. adv.ll]tai._,()us t(, i1(,!,.itt. L'V t'fl_._-t._, llli_ lll,lkt,'_

it nc_m,ss_rv L(, al)ply thu (oatiiO_, (in the, ,,_u ,,I v,_p,,r d_.l),,_,iL_.d .... _t-

: be applit, d u'ith one pass with_ut tht, rm._l d._n,_>,,_, t,, tl.., tt n lilts,..
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The cause is attributed to the high heat of vaporization for metal in

: combination with the small thermal capacity of thin polymers. The prob-

_' lem will be less significant as the coatings are applied with a continu-!

ous process allowing better heat dissipation from a moving metal backing

: (roller). However, it is a factor that must be addressed in the design

i'5 L_ of the production equipment. Additionally, because of the higher heat

.... of vaporization of the chromium emitting side coating, the requirements

I " for the coating equipment for this process are more stringent. In fact,

' during the course of the work for the Solar Sall program, no vendor was

= _-_*'° found that had a continuous coating facility for vapor depositing chrom-

_. ium coatings onto polymer films in widths greater than twelve inches.

!-_t_i Other producibility considerations are the control of the coating qualitydlllmli, '

..... integrity and uniformity.

p=

! _._- Since the thermal control properties of the film are derived

: from the chromium coating thickness, this parameter must be very closely

controlled. In addition, the chemical composition (purity) of the chrom-

_:. ium will vary with the quality of the vacuum within the chamber where

,, the coating is being applied. Lower vacuum tends to produce slightly

/ oxidized chromium coatings which, in turn, will have different emittance

= ...... properties than tilepure chromium, Large production facilities, as a

_: gener_l rule, tend to have poor vacuum capnbilities. Since the chromium

_ :. coating process will need stringent process and quality control, the

,_ , development of Improved metallizlng equipment (over what is currently

available) appears mandatory.

" l _._a physical w, por deposition (PVI)) method was the major
...... . candidate process that was identified for application of the metallized

coatings for the front reflector and backside emitter of the Sail film.

= '_i. . Tim method was selected primarily on the basis that it has been the most
r

_o,:. thoroughly developed commercial technique and would be the most expedi-

tious techuique to develop to the point where large w_lumes of material

_ could be coated with minimum modifications to existing facilities.

,_. The availabll ttv. of the proposed rL,w materials for applvi,_,,. .

: _ wqmr deposited ,:,,stings (.|luminum and t:hr,_n|lum) to tht, Sat 1 t i lm

_9, L

L"

" - ........ _,_'/_- -_ __---"_v--: -_'_-"_ ........
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appeared quite adequate and the typical production rates predicted to

be necessary to coat the film were also achievable.
4

Other processes such as sputtering and ion plating were also

assessed as potential methods for applying the metallization. Ion plat-

ing of Kapton film samples was performed by Endurex, Corp. The thermal
o

radiative properties of the samples were then measured at TRW, as part

of the measurements program previously reported.

I °° Though limited in the scope of their effort, Endurex demon-

_I_ i)" strafed the technical feasibility of the _ on-plating process to apply

metallized coatings to ultrathin polymer film for the Sail. From a

thermooptical properties viewpoint, the ion-piated samples consistently

_ yielded values of spectral reflectance (for silver and aluminum coatings)

and effective emittance (for chromium, etc.) which were equal to or1

, superior to those obtained by physical vapor deposition methods. Solar

reflectance values from ion-plated aluminum averaged near 0.91, while

+ emittance values from ion-plated chrome ranged between 0.68 and 0 73 on
_i

_: 2.5 micron Kapton, and surprisingly, show less dependence of the emit-

tance on chrome thickness than is observed for vacuum deposited chrume.

Endurex had no problem with ion-plated ITO on rmlymidu films, and

o. achieved emtttance values approaching 0.68. Itowever some of the ITO

_ coatings were not sufficiently conductive, z_ssumlng that this prob]emcould have been solved, the ability to coat ITO was demonstrated.

Endure× also [ndlcated that there were no unresolvable scale-up di.ffi-

i culties with the ion-plating process. In additim_, l imi+._d b, md pe_.l

; test strength results were higher for these c-,|tings than f,,r ,'t,mparable
!

-"_+,i vapor deposited ones. Sufftc|ent data was not L_htained however, pri,,r

?' to culmination of the effort on the Sail program t,, g,|tht, r ct,n,'lt,:+ive

evidence.

The sputtering prucess offers m;,uy advantages, and a_:_,,,rdine,

+° to a Battel|e report 7, has rpt'entlv been d_,velop,'d into a hil_h-rilll, pl,*,-

ess bv the use of ;_ tn/lglletiv field over tile cdtlll*dt' surl/It't' It, c'lllhtlD 12
?

pldSrll/l dullsltv. 'l'hv pr_,cess is km,w|| for Its st,lble _l_el'/Iti,_l_ .llld,

8° till[ [kt, th(' PVD mt, th|)d+ lit+ rate itlt+llit_r is III't'I'SP:,IIV If+ lTh'lillt,lill ,I

_,..... • _'_'ll_t,lrlt metal I iZ,lt Jilt1 r;it_,. .

:=_ 4- 56
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, 4.3 JOINING, HANDLING AND PROCESSING

. 4.3.1 Background and Technical Requirements

In previous sections it was pointed out that the Solar Sell

:i is a massive structure requiring large areas of ultrathin Sail film in

.... order to gain a favorable Sail loading factor (the ratio of Sail area to

Sell weight). The Heliogyro requires approximately the same sail area

_: in its twelve individually deployed blades as the Square Sail. For

each of the 7000 meter long Heliogyro blades, an estimated 7328 seams

_e_ : were required to join the panels. This corresponds to a total seam

: length of 675,000 meters (400 miles).

With these imposing figures, it was apparent that some major
_ <,"

technology adwincements in the fabrication ¢)f flexible structures would

be needed and a number of tremendous technical challenges were involved

o.: in selecting a candidate method of joining tileSail film segments and
o

o_-: in fabricating tile S_lil blades:

_:_ (I) large flexible space structures had been fabricated,

• e.g., Echo Satelllte; but none as large as the

Solar Sail. The Sail is lOOO times larger in

" surface area.

(2) films with area densities of 12 g/m 2 had been fabri-o

cared into small flexible structures; but none as

light as 3 g/m 2

_- (3) metallized polymer films, e,g. ah|minlzed Kapton, had

• been successfully joined; but joined surfaces were not
o ""

required to sustain elevated temperature and space

radiation exposure for long periods

.... Some of the technical requireme1:ts for the joining method are shown in

Table 4-20. By examining these requirements and the available methods

_'_ for joining and handling ultrathin films, !t was apparent that serious

consideration would have to be given to these factors.

4-_8



: Table 4-20. Target Technical Requirements for

Joining and Handling

• A. Mecb an ical

• highly reliable, automated, fully mechanized Joln,ng

system

..... • bond strength greater than film material

_'_ • minimum damage to coated film during processing

; • overall dimensional change of joint similar to that
.... of Sell film

• ultrathin films will require some type of support,

e.g. rlp-stops during handling, fabrication and

deployment

• reinforcements would be required at load transfer

points into the Sail structure (Square Sail) and at

o _i' points of high stress, e.g. lead and trail edges of
blades (Hellogyro)

"_=" B. Thermal

• • thermal stability of bond m,'st equal that of Sail
- film

F

' C. Radiation

dmalt-.
,. • radiation resistance of bond must equal that of Sail

'_' film

° D. Electrical

• electro._tatic charging of Sail film would Ii,lve to bt,

5#lli.' t'ontrolled and means for a,,compliM|lng tt_i._ would¢:

o_r..'. also bt' required in tilt, st.,am
dlll_Ib.

' 7

$,

_.:. Initial effort was devoted to a survey and assessment of

.'. known joiuing methods for tile major Sail film material candidates ,it
" that time. This included an assessment of the various generic bonding

methods for applicability to ultrathlu film materials. Additionally,

the current t_tate-of-the-art in performance, efficiency and reliability

' of parachutes, balloons and other lighter-than-air vehicles was examitwd.

_ Huch of the recent research and dt, vetopment in the latter area; witll.

,:.'".. respect to materials, handling illld fabrication had bt, t,n perft,rmt.d .it t,r

for NASA-LaRC (see Refs. l-II).
O_

4-5q
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This survey and assessment resulted in a preliminary llst of

the most promising Joining methods which are listed in Table 4-2].

There were some obvious disadvantages with the mechanical Joining

methods (e.g. stapling, sewing, etc.). These were as follows:

" (I) Reinforcement was required along leading edges of the

film to a_uid tears as each hole for a thread or

. staple represented a stress riser. This added we.ight

to Sell sheet.

(2) The the:mal heat balance would be affected by the

_'_i geometry of a thread or a staple which would make the

i o seam temp,.,rature dissimilar (higher) than the 5:':_nce

_*,_",ii of the Sail sheet.

i .... (3) Extra weight would also be added from the introduction
6<

=,/ of the thread or staple.

i_ . Upon further evaluation and experimentation with adhesive bonding, it

_=_" a_peared evident that this method showed the most promise for the join-

! ing of ultrathin films. Therefore, major emphasis was placed on jointv

• design, type of adhesive and process to be used.

i

>, Several types of bonds were expected to be utilized in the

fabrication of the blades for the }leliogyro. Some are used to join

... the adjacent film panels of a blade, some to provide rip-stop protection

in the blade panels, and still others i;: .he fabrication of the high

_ . strength edge reinforcement members. The latter is discussed separately
o ,

o in another section of this report dealing specifically with the Hello-

• gyro structure.

As earlier discussed, the basic ! _nel segment b,nds (bonding

_ adjacent strips of film together to form larger slleets) were by far, tllc

most numerous. Early in the program, when effort was belnR concentrated

.:' on tlle Square Sal|, this part[vtllar ioitIt rovt,iw,d tht, major attention
it

and concern. Therefore, on_'e the major candidate h,mtli.g mot.hod was

" determined (aqheslve bonding), ol-lort was dew, ted both to st, lo, t ing the

typt. adhe,_lv,-" ;,nd to designing an opt imnm, haste iolt_t.

4-hO
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Table 4-21. Preliminary S_il Film J_ "_ing Methods

....' Joining Method Comments

_! Adhesive Bonding Minimum weight joint, minimum

.... thermal problem (joint design),

good material compatibility
possible.

Sewing/Stitching/Lacing Ease of fabrication process,
availability of equipment,

.... ' known technology.o

_ v Stapling (Same as for Sewing/Stltchings/

Lacing)

'_° 4.3.2 Evaluation and Selection of Joining MethoJ

4,I

_" Since the work in the basic film materials area of this

: program indicated that polyimides were the major candidates for the Saili

'i. film, a survey was made to identify potential adhesives for bonding

" 'i polyimide films to themselves. This survey, which included a search of

_ the l_terature and contact with industry experts regarding high tempera-

ture adhesives, resulted in a list of potential adhesive candidates in

_ _ the following chemical classes:

°°' (I) polyimides

(2) polyphenylquinoxallne

(3) phenolic aralkyl ethers

O

Adhesive samples from each of these classes were obtained

'_,,_i from manufacturers and screening tests were performed. Host of these

o tests were made with Kapton IIpolyimide film, which was the most readily

.... available and also had emerged as the prime Sail film candidate. Earl>'

__ testing was performed on Dare films and subsequently on metalllzed films

after the reflective and emlsslve coating system (AI and Cr) had been

identified. The criteria used in the screening tests for th¢, adhesives

are indicated on the f¢_llowing page.

4-61
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Proper ty Crlterion

Bond Strength no failure in bond after curing

Thermal Stability bond to be intact after aging
for 24 hours at 315_C

_.,_ Handling/Processing ease of application, speed of
J ..... handling, sensitivity to ambient

%_

_!_. moisture, etc.

"' Availability should be commercially available

,,;; in large enough quantities to
J:_ support Sail fabrication
.... ; schedule.
,, 2.

:; 4.3.2.1 Evaluation Tests. A list of the adhesives evaluated are

_- shown in Table 4-22. Various thicknesses of Kapton H films were

o__ employed (2.5, 7.6, 25 and 125 um) for the screening tests. The specl-

mens were primarily of the lap shear type, approximately i x 8 cm for
I. 2
,: total specimen size, with a joint area of 1 cm . Bond line thickness

_ was one of the variables and thicknesses from 2.5 to 12 microns were

_ o investigated. The adhesives were generally applied by spraying with an

,,. air brush, manually brushing and then scraping (leveling) with a blade,

_' or by the use a Q-Tip. (cotton swab.) to application
of Prior of the

adhesive to the Kapton surfaces, the film strlps were cleaned with

ethanol (100%) and air dried. Adhesive was applied to one or both sur-

_ faces of the Kapton, dried and prepolymerized (where applicable) by heat.I!

0

o. Bonding was accomplished eitller by using a manual soldering icon (at

_ 370°C) or a hydraulic platen press (where pressure and temperature were

,_ easier to control). Initial cure times varied from 10-15 seconds with

the soldering iron to 30-40 seconds with the platen press at tempera-

tures of 310-315°C.
o

:. " Slm'e the boudlng pro_'ess ultimate]v used to fabricate the

Sail blade panel seams had Lo be, _1 necessity, f,lirlv fast (2-3 meters/
<,

minute); the time required t_,make a :_tr_n_ jo|nt was _Idominm_t f;ictor.
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i. Bond strevgth tests included tensile shear using the Instron i

tester in compliance with Federal Test Method Standard #175, Method

I033_IT and creep measurements under constant load. On a selective

basis, tests were performed at elevated temperature in vacuum or in an

inert atmosphere. The Kapton used in making up the samples had to be
.

.,_: thicker than that used for the Sall in order to get bonds to fail in the

" joints during the lap shear tests.

The results of the tests indicated that satisfactory bonds

L _e_e _btalned with NR 150B2G and NR 150A2G adhesives made by duPont.

r Tho_ made with TR150-25 and TR800-25 were also acceptable. The TR
} _

i _ adhesives, while showing good thermal resistance on bare Kapton at tem-
I o ,

i peratures of 260°C (TR150-25) and 310°C (TR800-25) were removed from
} ,,:

I :. consideration however when a question arose about their commercial avail-

ability in large quantities. Bonding was achieved in less than 15 sec-

o_ onds w_th the soldering iron and under 45 seconds using the platen press

.... at 315°C. Further tests and evaluations concluded that the NRI5OB2G was

the prime candidate for the adhesive system. This adhesive offered

_' superior bond strengths at elevated temperature and good thermal sta-

blllty over the temperature range for the HCRM.

_ 4.3.2 2 Joint Design. Concurrent with the effort to select the

:_ adhesive, wcrk was conducted to design the basic seam that would be

employed to Join adjacent film panels. The major considerations were:

_:i (i) the joint would have to have the same thermal

_i characteristics as the Sall film

_ (2) the weight of the Joint itself would have o be

minimized

• (3) the Joint would have to be compatlble/adaptable to

high speed production Joining processes
i

°( (4) voids in the adhesive would have to be kept to aminimum to avoid thermal problems.

.i (5) the amount of exposed (bare) adhesive (sun side) would

_: have to be kept to minimum to avoid thermal problems.

o

4-64
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b

After studying the problems involved, a design evolved which

incorporated a butt seam with an overlapping tape (doubler) on the anti-

° i: sun side of the film. This design is illustrated in Figure 4-20 which

shows a 1 cm wide doubler tape of metalllzed Kapton film, 7.6 microns

(0,3 mil) thick, adhesive bonded to butting edges of 2.5 micron (0.I mil)

thick, metallized Kapton Sail film. The bond line thickness is 3.8

microns (0.15 mil). It was calculated (Reference 12) that the gap
_'.

_= between the two butting edges on the sun side should not exceed 76

_ microns (3 mils) because of temperature control considerations. Other

advantages of this particular Joint design were:

_._ (a) adaptive thermal control coatings could oe applied to

, the doubler ahead of the final Joining process

(b) the adhesive could also be applied to the doubler
'- prior to the final Joining process (thus omitting a

._-.,: processing step on the film sheet)

)-_ (C) the doubler (with the adhesive pre-applied) could
%

_'i be employed as the reinforcing transverse rip-stops

....i for the Sail film in the blade panels.

ki'

Consideration was also given to the weight that this type of

= , Joint would contribute to the spacecraft, Calculations showed that this

,. seam would weigh approximately 0.184 g/m. With a total seam length of

' " 675,348 m, the total seam weight would be about 124 kg. For comparison,

it was calculated that for a sewn seam the weight would have been
!--.

0.204 g/m for a total of 138 kg.

° : 4.3.2.3 Testln_ Program

(a) Thermal Aging

= :,, After selection of the candidate adhesive and Joint
t

i design, further testing was conducted to determine the
.... 1

,I aging characteristics of the Joint at various tempera-

1 tures. Other tests were performed on the "benchmark"

1 .)c,int such as the simulated space environment testing
' l

!.

u

4-65

_Z



720-9

r. _i_.,_ .OVE!RLAP& SLIT

/75,m TO MATCH AT BONDER

2.54_

3,81 _ = E IVE

., °o •

"_ KAPTON

:?

;__. : •' 7.62,u 0i3 m HROMIUM

_. typ 2s;de,o

r

...... Figure 4-20. Benchmark Joint Configuration

r

_ r, _r at Boeing where sample Joints were included with film

_ samples. The results of these tests showed the joint

to behave similarly to the basic films. Details of

,, these tests are discussed in a later section on system

per formance.

;: Sample Preparation
0-_!"

.... _ Metalllzed lap shear specimens were made up using the
o

butt configuration and "benchmark" plated (IO00A of A1

on one side and 125A of Cr on the other) 125 micron

- _ ..... (5 mil) thick Kapton film. Again, the thicker Kapton

was used because failure occurred in the film with the

thinner gauge films and for these test purposes, fail-
(

:. ures in the joint were sought. Bond llne thicknesses

_I of 2 to 4 microns were employed.

, 1 IS
""I ; i" tu,XL['rY

L!i
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_: An appropriate number of specimens for a statistical

® _ base could not be prepared from the same batch processes
because of the lack of equipment to prepare large batches.

_ * Sheet Joints were therefore prepared from small sheets

of film (each 13 x 28 cm) which were subsequently cut
o

to the specified specimen sizes. This neces_itated

. the preparing of a large number of batches, and thus

. obtaining control samples from each batch, because

=_ ._)..i tensile shear strengths could vary from batch to batch.

° '!:_:_ (b) Testing and Test Resultso O__ _

_:,_ : The specimens were placed in evacuated and sealed

_! quartz tubes which were in turn placed in ovens and

° . ; aged at temperatures of 240, 270, 305 and 370°C. At

-_ ....._ certain intervals, generally every other day, speci-

,,• mens were withdrawn from the ovens and tested at tem-

oo_: peratures of either -60 or 250°C.

,_ Control specimens, that had not been aged, were tested with

_: each group of aged specimens at either -60 ° or 250°C. The lap shear

o, strengths of these control specimens_ were then compared with the lap

_; shear strength of each particular aged specimen to arrive at a shear

o; strength ratio, St/So, where St = the shea_ strength of the test speci-

men and SO = shear strength of the contLol specimen. These St/So ratios

were then plotted versus aging time for joints aged at the four tempera-

_ tures (240, 270, 305 and 370°C) and subsequently tested at either -60°C

'_' or 250°C. Figure 4-21 is the plot of aged samples that were tested at

_ ' 250°C, while Figure 4-22 is the plot of those specimens tested at -60°C.

_,......_. Except for one case, in the samples tested at 250°C where a sample w_s

o aged at 240°C, there was an initial reduction in St/So, then an increase,

....._u_ followed by a gradual reduction.

d

The average lap shear strength values for the control
, !__'.

,_' samples tested at 250°C was 400 psi, while those tested at -60°C was

• 125 psi. Thus, ever_ thcugh the trends were generally toward lower

I
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St/S ° ratios with longer aging times, (especially at the -60°C test

temperature) the strength of the Joints appeared adequate for 'the appli-

cation where maximum loads of 0.5 psi had been projected for the film

sheet while infllght. Generally, the data it 250°C is what would nor-

mally be expected, where polymer materials that are cured at or near

their use temperatures perform better than ones cured at temperatures

lower than their use temperature. It is apparent that a higher tempera-

ture cure is beneficial for increasing the strength of the joint.

= _te trend of the data for the samples tested at -60°C towards

the lower values is not so easily explained. More analysis is needed

in this area.

:o

:: 4.3.3 Handling and Processing

4.3.3.1 Requirements

Although it was anticipated the Sail film would receive

separate handling prior to the bonding operation, e.g. application of

the reflective and emissive coatings, it was perhaps in the bonding area

where major concern occurred. This is where sheets of coated film are

processed into Sall blade panel subassemblies and, as a result, the film

would probably sustain its greatest mechanical stresses. The general

problem of handling has not been previously discussed because some

_ (: thought had been given to having the coatings applied to the basic film

at the same point in the manufacturing cycle that Sail fabrlcation was

performed. This would eliminate a separate handling and packaging step

for the coating operation.

There were thr,,e outside contracts to study the ft,asibllity

of Sail fabric_ltion. These were conducted under the direction of the

Project Development Grot,p of the ,IPL Applied blechanics Division. Thest'

• conLracts basically covered Solar Sail preliminary design _md fabrlca_ i,,n

assessments. Two contractors, (II,C I)over and Sheldahl) intt iallv wt.re

conducting studies on thL, Square Sail c_,nfiguration and ore, (Astr.
i

:: Research) on the Helt_,gyro. Therefore, the subject _,f fahricatlon
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, ,_i_:- processing of the ultrathtn, flexible Sail film received close attention

- .i_,?:' ' by qualified personnel. These contractors are very experienced in the/j• fabrication of lightweight, flexible space'structures.

For this portion of the report, "processing" is considered

as the conversion of film and adhesive Into a great number of Heltogyro

_;_: blade panels meeting all of the engineering require_ents. Important

_: •o_-: considerations were the retention of all the properties of the Sail film

=_'_._"; required for the HCF,M, e•g., reflectlvlty, emissivity, and long term

..... ,,_ resistance to the mechanical, vacuum, thermal and radiation environment

J _ Also very important, were the control of dimensions and mass distribu-

,_ _ tion. This was especially true of the adhesive Joint where tigh_ toler-

...... _:r antes were required on the amount of adhesive employed and the width of

._, the exposed gap on the sun-facln8 side of the butt Joint.

:; To meet the requirements vf the HCRM, aIl of tha appropriate

! =:/::.: technology had to be developed, and a fabrication facility provided in

_, ,: .... the short time alloted by the Sall program schedule. The facility had

_ N':_ to perform at a rete compatible with this schedule• In terms of one of

the key operations, adhesive bonding, this rate corresponded to 2 to

_r' 1O meters per minute, depending upon such factozs as number of shifts

per day, and maintenance down-tlme. Notwithstanding the considerable

- ; differences between the Square Sail and the Heliogyro, the general

_ scheme of film and adhesive processes in their fabrication would be very

_o ° similar.
Z

_'_B,; It is acknowledged that changes in 'specific raw materials

could result from the findings of future research and development; how-

ever, since major attention has focused on a single set in this program,

thei_ use will be assumed in this section. The film is 2.5 _m Kapton

I coated wlth i000_ of aluminum on one side and 125_ of chromium on the

other ("Benchmark" film) The adhesive is DuPont's NR15OB2G which, like

_'_ Kapton, is a polyimide.
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" A brief outline of the required process elements is shown

_ below. In the case of a one-piece Square Sail, the elements listed

,. under item 2 below would be repeated many times with sub-assemblle_ of

' _ ever increasing size.

, (I) Raw materials will be:

. (a) received,

o-_:'_. (b) stored,

(c) subjected to quality control inspection and

(d) delivered to work stations.

_° _: (2) At the work stations, films will be:

(a) deployed, or partly deployed, from portable

.... packages (probably rolls),

(b) metallized

(c) measured,

, (d) slit,

(e) aligned,
_ _.

_ (f) bonded,

_,!. (g) subjected to non-destructlve evaluation (NDE)

_ (not necessarlly all at this point in sequence.

• _ For example, real-tlme NDE of bonding is

contemplated).

_._ (h) repackaged,

° (I) delivered to another work station.

_r (3) Thermal treatment for additional curing of adhesive

bonds.

_ (4) Final inspection, Includlng weighing.

o. (5) Packaging for flight.

l,
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Adhesive bonding, consists of several sub-elements. The adhesive is

_i supplied unpolymerized dissolved in a solvent. First, solution must be

° applied to the doubler strip in measured.denslty (e.g., air brush spray-

ing). Then, the applied solution is dried and prepolymerlzed to a tacky

_: state by heat. Next, the two Sall sheet strips being bonded are brought

together, the doubler with preapplled adhesive is fed into the operation

and the entire assembly fused by and heaL. Our investigations
pressure

:. indicate that sufficient strength for subsequent handling can be attained

in a period of about 15 s. The additional curing (process element 3) is

needed to produce in the adhesive bond the thermal resistance required

of the Sail for the HCRM.

4.3.3.2 Film Handling
o

.... Early inquiries about the fabrication of llght-welght flexl-

_': g/m 2,. ble structures revealed the 3 Sail film to be considerably lighter

: than what had been fabricated up to that time. The chief concern was

the film 'ragillty, and particularly its poor tear resistance during

...._ hand l ing.
o

'ill

!_ However, since the inception of the Solar Sall program, con-

:_°" slderable quantities of 2 5 micron (0.I) Kapton film were handled and

subjected to a variety of testing at JPL. As a result, greater confl-

....' dence was gained in handling. The two fabrication study contractors for

=,_, the Square Sail, (ILC and Sheldahl) concentrated on this problem. At

i ,: one time, there were plans to demonstrate the fabrication of a 2000 ft 2

Sail panel. However, this was not performed when technology development

_'i was switched entirely to the Heliogyro in late Hay 1977. Included in
i

the plan were the development of methods for repairing anticipated tears.

Without actual experience, a good estimate would be very difficult of

the frequency of this maintenance item. The chief problem anticipated,

. if considerable repairing were required prl.or to launch, is the compll-

cation imposed on efforts to attain specified mass and mass balance

on the Sail blades.

,/"
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• In anticipation of severe damage problems with the Sail

° film during processing and deployment, investigation was made of the

feasibility of employing a reinforcing type of material to support the

Sail. If a supporting film were needed only during manufacture of the

Sail, it did not appear difficult to achieve. Kraft paper was used with

success in the preparation of "benchmark" adhesive joints in an experl-

"_'_ ment with a commerclal bonder. Also, a paper was employed by MRI in the

°i. retrieval of their water cast polylmlde films.

:. As the HCRM was originally conceived using _he Square
o

..... Sall configuration, there was no allowance for the extra mass a perma-

nent or a temporary supporting film would impose. However, some inves-t.

_-.',. tlgatlon was made into the feasibility of a temporary supporting film

.... (one which would be discarded after the Sall was deployed). Three con-

o_ cepts were identified which appeared feasible, providing certain crlti-

....... cal questions were answered:

_- o ,. (i) Some polymers degrade thermally, and their degra-

dation products are low enough in molecular

: weight to evaporate in the vacuum of space. The

• one polymer of this type that was identified,

poly o_-methylstyrene can be produced in film

form. However, it is too brittle to be practical.

...... Two averages of avoiding the brittleness were

_ recommended for further study, (a) plasticization

_ ' or (b) replacement of the methyl group by bulkier

pendant groups.

'_/ (2) A ser_es of film polymers was identified in a

°_-_- separate investigation which also degrade

._ thermally with the aid of UV radiation.

Practical use had previously been made of this

technique using polybutylmethancrylate, in the

'_i!-
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t
! launching and deployment of a 9 meter diameter

.i- grid sphere, passive satelllte. I_o questions

: remained to be answered regarding the feasibility

' of either of the supporting film concepts just

described. First, in the case of the Solar Sail,

the removal of the film and its degradation pro-

ducts would have to be complete. The research in

.... reference 13 didn't go that far because for that

mission it wasn't important. The second question

was: To what extent would the degradation pro-

ducts from the volatilizing materials contaminate

• optical surfaces on spacecraft instruments as well

as the reflective side of the Sail?

_x (3) Another concept considered was based on the selec-
:,4:

_ tion of a s,lpportlng film with a unique set of

' other properties. In this case the supporting

film would be very weakly attached to the Sall

film and after deployment it could be peeled off

and discarded along with other elements of the

° vehicle. A bond would be achieved between the

two films Just good enough to provide the required

____._ reinforcement, but weak enough to avoid damage

during their separation. The bonding mechanism

between the two fllms would be made by a liquid

having a low but positive vapor pressure. The

liquid would have to be compatible with the Sail

film in the sense of not diffusing or absorbing

• into it or otherwise degrading it. A major prob-

lem with this concept would be the mechanical one
__

_: of peeling, collecting and projecting the fugitive

_- film in a way to avoid impact with any part of the

vehicle.
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" 4.3.3.3 Film Blocking

'_. Thin plastic films have a tendency to cling together and

to other surfaces. Among the factors causing this phenomenon is the

static electric potential. Kapton, being a dielectric, would be expec-

ted to give trouble at 2.5 microns (0.1 mil) thickness _n the uncoated

state. Qualitative observations in our experiments with metalllzed

.-_i films, however, indicate that the problem was not as severe. Blocking

_ is probably most critical during handling prior to the meta]llzatlon.

If the adhesion between folded or adjoining Sall film layers prior to

blade deployment is strong enough to cause tearing or delamlnation or

._"": surface demagc, it can't be tolerated. Provisions have been made in the

_!" deployment mechanism for tile Heliogyro blades to minimize this problem.

The concern was much greater with the Square Sail configuration. There-

fore, some attention was directed towards conducting tests to establish

the extent of the problem of "blocking".

:; TileASI_I tests that deal with the tendency for blocking
5

and with the force required to separate were reviewed. They did appear

to be directly applicable to the needs of the Solar Sall film. A corn-
O"

. binatlon of both measurements in one test would be preferred because

• they are related. A more appropriate type of test would he as follows:

. (1) Sample Preparation

Cut samples and assemble in a simple jig for

t'olld l t i 011 [11_ (Wtth free ends aw| i 1ab Ie for

peel test inR).
o

(2) Cond t t ion in_

f (a) Compressive stress film mass to 30 psi

. (b) Duratfm_: I day to as long as possible

(,.') Temperature: -40 to t80(:

(d) lhlmiditv: 0 to 5()'.' RII

, (e) Vacuum: .";tart at alto.; bleed down, and h,,ld.

,o/tic •

" (f) Ilandling: "white glow.," cart,

" 4-75
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_ °: (3) Peel Test

(a) Measure stress (ib/in) vs peel rate

_ (b) Rate: several decades

(c) Temperature: -40 to 38°C

..... (d) Vacuum: 10-7 torr

_: (4) Evaluation

t

(a) Examine surfaces for blemish, delamination,

_' . and tear.

o

• 4.3.3.4 Film Creasing

: Wrinkles and folded creases in the Solar Sail film areO

h

undesirable for a number of reasons. If creases are tight enough, the

film itself is weakened. Creases not t.ght enough to weaken the film

! could be expected to take a permanent set on the one hand and either
i"

fracture the metallic coating or degrade tilespecularity of the reflec-

• tire coating. Besides degrading the specularlty, fractures in or missingm • .
o.

' metallic plating leave those areas of the polymer unprotected _rom UV
,o

: and other radiation.

It appears reasonable that the Hellogyro blades might be

fabricated and stowed for flight without ever subjecting the film panels

to wrinkling or folding. Tight creases might be avoided in a one-plece

r, square Sail also by the use of the concepts developed in Appendix I.

:; Some limited testing was performed to determine to what extent deterlor-

_' arian occurred in the metallization (conductively and reflectively)

during cyclic bending from straight to a 4" radius. Coated Mylar film

,, (2.5 I_m thick) was folded into strips and flexed 200, 400, 800 and

lh00 cycles under a light load. Generally the aluminum held up well

but the c(mductivtty of the chromium decreased slightly.
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4.3.3.5 Process and Quality Control

_ Assurance of meeting all the engineering specifications i

will require extensive monitoring and control in three general areas.

These are: (I) quality assurance of incoming and stored raw materials,o

(2) controls on all process operations (automatic in many instances),

_: and (3) NDE (non-destructlve evaluation) of specific product elements

during processing, adhesive joints in particular.

--#=_o

(_ _

_: Film must be inspected for thickness, density, reflective

_ : and emissive coating uniformity and of coarse tears and voids. Film
d,z:' '

') o

.... samples must be taken (posslbly remnants from sllttin_,) and tested des-

,:_ tructively in a way to correlate with long-term environmental resistance

' properties.

..... Adhesive must be sampled and tested for processability

(e.g., reproducabillty of areal density in standard spray conditions)o

: and its capability for making the apecified environmentally resistant
- ,j[

_ Joint.

The problems of process control for lay-out dimet_sions

...._- were studied by the fabricatlon study contracters. The Square Sail would

_ be particularly sensitive to accumulation of errors of tl,_s type because

' of the necessity for approximately 1000 adhesive joints in sequence

° along certain dimensions. There arc several dimensions In tht,s_am

9 joint which will hart, to be controlled closely., pa;'tlv,for overall

F:' dimension control, and partly for a variety of ,_ther rea._tms (roliablt,
o

/_ strength, overall mass, etc.). In particular, the tlnprt,tt,cted ;|dheslvt.

in the gap of the butt joint is expectL,d to bt, sensitivc to the near-
,[

_ sun space environment. Therefore, gap width control is t, ssent|;|l.

Total mass and mass l_alanct,from pt_Int to p_Int (Sqmlro

Sail) or blade to hladt, {licl[ogyro) _irt,import;liltrt'qulrt.mtmts, t)tlt'
c

O

,,_, : pr,)cess control which will hi, [12t, ded fll ilFdt'r for ilCctl|';ltt' [11[.;IStlt't.rlltHlt, q

, of mass is the watt, r t t_t_tt,nt t_| the t i Ira. K_lptt_tl t'itll abs_,rb _t:4 Elttt h its
t,

r_d:_F_3_ 2'97 water. (_onstant vontrt_] of tt, mp2r;ittlrt, ;ltld ]lumldltv illrou_,,hottt tilt.

t3 "
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.... plant is a reasonable approach. Also of concern is possible lot-to-lot

_i'_' variation in the Kapton film, Ther_ are opinions that variation, may

::" exist between the amounts of unreacted polymerization charge materials

_" and/or by-products from one lot to another.

Among the conditions which must be controlled, in addl-
" j

:_: tion to those affecting dimensions and mass, in the adhesive bonding

:_:? process; are temperature, pressure, and duration. Control of tempera-

:: ture and duration is also needed in _he adhesive post-cure.

'_ Monitoring and assurance of many of the required proper-

:_ ties will be achieved by a variety of measures not requiring real-tlme

i_ NDE. Partly, this will be done by QA of raw materials. Other measures

-;_: will Include the design of machinery, partlcularly film handling, and

_:_ process controls. The chief exception is adhesive bonds. Probably the

most effective method of assurivg bond quality is real-time NDE. This
ov

means that such properties as centering of doubler, butt-gap width,

_ flash dimensions, and completeness of bond must be monitored at a rate

,!: of from 2 to 10 m/min. Qualities, such as strength and properties

"0_: correlating with long-term durability can be assured by a combination of

_! process control during bonding and destructive tests of appropriate

e,_ coupons.

One or more concepts for monitoring each of the critical

_ parameters had been identified. For example, film thickness or area

density, could be monitored by a beta radiation gauge. The optical

° transmission or electrical resistivity of the chromium coated film would

be a measure of the chromium thickness. In addition, the solar absorp-

tance at particular wavelengths, where the values are stro_gly thickness

_ dependent, is another technique for measuring the metallization thickness.

0

' 4.3.3.6 Processing Status

As other sections of this report will show, along with the

reports of the fabrication study contractors, References 1 and 2, Sec-

tion 4.1, established processes and equipment were identified which can
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" be used, perhaps with some modification, to fabricate the Sail and con-

duct many of the raonitoring tests. Nhere specific needs were lacking,

,_- conceptual designs were proposed.
= _I!7 .'

The adhesive bonding process received considerable

,,: attention at JPL. An adhesive with the required properties (both pro-

cessing and functional) was identified. The portion of the program that

remains, as with all the other material components of the Sail, is com-

pletion of the durabillty testing. The results of limited durability

_: testing of the adhesive joint obtained thu= far were covered earlier in

_i" section 4.3.2.3 in this section.

= _" Other tests were conducted which tended to show that

: there was considerable safety factor in the "benchmark" joint. As rat.n-
2

tioned previously, in order to perform shear tests of the adhesive i_int

=: _ by pulling specimens in Lenslon, it was found necessary to substitute

_ _: 125 micron (5 rail) metalllzed film for the 2.5 micron (O.l rail) film

•" and 7.5 micron (0.3 nail) doubles in order to avoid film fai?,:rc.
oI

,. Liraited creep tests showed no measurable displacement tn several joints

held under constant shearing loads at 235°C in vacuum for over l lO0hours.

The highest loaded joint was stressed over 9 times that required in tht,

Sail.

The processing study in particular was encouraging. As

: reported earlier in this set;tiont "benchmark" joints made from "bench-

's" mark || materials were made in conventional bonding equipment. None of the

problems of quality and reliability appeared to be too difficult to

solve by ordinary methods. A demonstration of the fabrication of a

,, large raulttbonded panel was accomplished. This demonstration Sail was

fabricated by bonding four 0.3 meter wide x 2.25 meter strips of coated

7.5 micron (0.3 nail) Kapton film into a stngle sheet. The entire

_, operation was performed on reasonably priced, comraerctally available

bonding equipment that could easily be modified to perform Sail sheet

bonding operations. The procedure is described In Appendix 1I.

!

0 I
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_ 4.4 SAIL FILH PERFORmaNCE

_= The initial investigative work and studies in thls programL

_ were aimed at identifying the prime candidate film materials and coatings,

_ , and methods for fabricating coated film segments into larger panels or

(in the case of the square Sail) a slngle one-piece structure. These

o initial tests and evaluations did not answer all the questions posed
ol

concerning the performance to be expected of the Solar Sail materials in

the space environment. Therefore, more extensive evaluations and analy-

tical effort was devoted towards assessing the effects of the space

._i_:ii _nvironment on the Sall film system. These assessments included: i)

_i identifying potential failure modes, 2) determining long-term life pre-
dictive methodology and 3) performing limited amounts of simulated space

environment testing.

,r

°_ _ The failure modes identification effort was separated into

: two categories: 1) material failure modes analyses for the fabrication

:_/_ through deployment phase and 2) an in-space failure mode matrix for a

, deployed Sail. Potential failure modes were identified in these studies

_/_ aZon8 with generalized requirements for special tests to determine
s

important Sail properties affected by the various failure modes.

:r

i_ii Predictive analyses of long-term serviceability were formu-

:' i! fated from physical-chemlcal theories. Chemical degradation at various

I temperatures, thermal aging effects on mechanical properties and the

,_il effects of thermally induced morphological changes on the creep behaviour

°_ and thermal expansion co-efflclent with respect to Kapton film were the

subject of these particular modeling studies.
-__i:_: ' '

"'_'_; In the area of space effects testing, a series of experl-

_.. mental programs was conducted to establish the effects of the following,

• either slngularly or in combination, on the Sall film and its bonded

_ j
:: olnts:

ii (1) thermal radiation

t ._. (2) ultraviolet radiation
'i
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i (3) gamma and neutron radiation

! ii (4) combined particle and ultraviolet radiation

_ (5) electrostatic charge control/dissipationr •

_-: _ Testing was performed at various locations, Including NASA-

i-_' ARC, NASA-LaRC, NASA-MSFC, Brookhaven Labs, the Boeing Co. and JPL.

_ 4.4.1 Fallure Mode Studies

As previously mentioned, the failure mode studies were

divided Into two basic categories: I) material failure modes analyses

for the fabrication through deployment phase and 2) analysis of in-space

_, failure modes.

_i. Potential failure modes were identified, along wlth general-

_' ized requirements for tests to determine properties applicable to the_. various failure modes. The m_Jority of these tests also determined

_ desirable material properties that were used in the selection of candi-

oi,' date films. Thus, even though values for these properties may have

i already been known or under investigation, the need remained for know-
: o

o , ing how they would change with time, temperature and radiation in the

. space environment. A llst of these required properties wlth attendant

i_ environment or test conditions is shown in Table 4-23.

_ 4.4.1.1 Fabrication Through Deployment Failure Hodes. In generating

a list of expected failure modes that might occur during fabrication

through Sai] deplo_nent, many assumptions had to 5e made concerning

fabrication techniques and final Sat1 configuration. Therefore, the

discussion that follows contains items pertinent to several manufactur-

ing methods and both sail concepts.

(I) Sail Contour and Smoothness (Square Sail)

A particular problem was foreseen with respect to the

topography of the Square Sail. It was visualized that
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Table 4-23. Simulated Solar and Space Radiation Test
Requirements for Determination of Sail 1

• Performance

_ Data Required Environment or Conditions

1. Physical and Thermal Character- • Thermal. A wide temperature
istlcs (Bi-axial) range is expected with brittle-

,: ness a possible problem at the
, • Tensile strength lowest temperature and coating

and seam bond failure or film

• Tear strength decomposttior at the highest
.... temperature. Data is required
.... • Yield strength at -lO0°C, 20°C, lO0°C, 200°C,

300°C, 400°C.
• Modulus

• Vacuum. Do thermal test tem-

_ • Elongation/Shrinkage perature applications at low

...._,: ambient pressure to include
- • Creep desorptlon effects on mate-

_ .... rials. Restrict atmospheric
° • Fatigue characteristics air contact with samples during

: physical property tests.

,, • Bond strengths (shear and
peel) • Solar Radiation. Tests are

required after maximum inten-

i s Specific heat sity U.V., I,R. and x-ray
exposure and after various

accumulated exposure times.

" • Accumulative environments.

> Physical property tests should

---_ be made at various significant

stages of the mission at

vacuum ambient pressure and
with the appropriate Sail tem-

• perature and cumulative solar
radiation.

Note: These properties should be

-_i_'' obtained after exposure to the
individual and combined thermal-

vacuum-solar environments

_ anticipated.

. 2. Electrostatic Characteristics Test electrostatic properties over

nntlcipated Sail temperature range
• Resistance (Tri-axial) and after sol_r radiation expo-

sure. Include Sall sheet, seams
i

• Capacitance (Transverse) and rlpstops in test samples.
' Include smooth and wrinkled sam-

• Breakdown Voltage ples. Observe warping
(Transverse) characteristics.

_i
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Table 4-23. Simulated Solar and Space Radiation TestRequirements for Determination of Sail"
Performance (Continuation 1)

• Data Reauired Environment or Conditions

3. Ovtical Characteristics • Optically smooth, clean Sail
material

. • Reflectlvltv

• Mechanically or impingement
* / - Specular Reflecclon eroded Sail material

_ _ - Total Reflection • Wrinkled Sail material

• Emissivity • Dust coated Sall material

=_m • Accumulative environments.• Optical characteristics should
• be determined at various slgo
?

_r_m, niflcant stages of the mission

" at the appropriate Sall tem-

= o _.,: perature, cumulative solar

- : i radiation and cumulative simu-
• _o lated erosion and micrometeor-

old puncture.

.. Note: These properties affect theo

propulsive and thermal balance
....• characteristics of the Sail. Pre-

_---" launch handling, deployment and

the space environment affect the
_"i surface of the Sail. Include

i_ _ Sall sheet, seams and ripstops
in test samples Optical proper-

_::., ties are required.

,_:: the deployed Sail, if allowed to relax, would take on
.?

_ an irregular shape, because of the following factors:

_ ,: (a) Effect of internal stresses present in the coated

film material before Sail fabrication.

'. (b) Effect of stresses Introduced by Sail fabrtca-

tion processes.

_. (c) Creasing (permanent set) introduced during

packaging, shipping, and storing.

(d) Effect of stresses introduced during

,,_r, _ deployment.
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(e) Shrinkage as a function of time and exposure.

(f) Differential thermal expansion while deployed.

o

It was further presumed that, if the deployed Sail were

._!_! simply restrained without actual tension, the billowing pressure of the

solar flux would be insufficient to remove undesirable contour irregu-

larities, either micro- or macroscopically. In short, it would seem

necessary to operate the Sail under slight tension to insure the

required surface contour and smoothness. This was not a simple

° requirement.

If the Sail were pre-tensioned in a structural support of

fixed dimensions, the tension will tend to be relieved by the creep of

the Sail material. The inherent shrinkage tendency would seem to

provide a counteracting effect, however, it is doubted (from past

_ experience) that this effect will be useful. It was apparent that some

mechanical means would be required to maintain tension automatically or

retenslon from time to time.

Analysis of this problem would depend upon testing to deter-

-_ mine the pertinent structural characteristics of the Sail material as

i a function of the space environment.

:.. (2) Differential Shrinkage

Assuming the Sail film material is supplied in bolts, wound

under, some nominal tension, there will be relaxation/shrlnkage if this
'/o i

'_ tension is relaxed during Sail fabrication. At the time when two Sail

sections are joined, they should have identical potentials for subse-

quent relaxation (short and long term), to avoid puckering and distor-

tion of Sall shape.
i

., (3) Overstressing

The inherent fragility of the u]trathin Sail material calls

for innovative processes for Sall manufacturing and handling. Tension

must not be allowed to exceed the yield point at any time, as this

would cause thinning and result in distortion of thermal balance.

i,
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', Also, the optical and electrical l_,tegrtty of Sail coatings will be

,,/:_ affected by stretching. Tests were required to establish a maximum

_ _,,_ allowable tensile load or stretch. Also required would be a means of

verifying that this load limit was not exceeded during fabrication or

handling.

(4) Puncturtng/Cutttn_/Teartn_

• The Sail film material is highly susceptible to rupture

from sharp instruments, corners, snags, foreign particles, etc. Posi-

_ tlve _uallty control measures must be applied to eliminate such hazardsoi

_ from the fabrication and packaging environments and to verify physical

_ integrity of the finished Sail.
(5) Cleanliness

=_ ; During Sall fabrication, the material will be fully exposed

_ _ _ to the ambient atmosphere, including any particulents that are present
,"

_:_ in the form of dust, smoke, and volatlles. There wlll be a tendency

_: for these contaminants to deposit on the material surface• The problem

_i may be aggravated by electrostatic forces. An evaluation is required

to determine the air filtering requirements for the fabrication area.

i

"' A general criterion for all of the fabrication planning

should be to avoid having to clean the Sall surfaces, as this would lead

to another set of problems including explosion safety, health hazards,

and Sail surface deterioration. All lubrication systems in the Sail

.... assembly area must be non-contaminating.
o '

(6) Electrostatic Charging

_ (a) _. Fabrication and packaging of the Sail
d.

i presents a problem in industrial electrostatic

_' charge control. Classical safety considerations
i

would dictate that the entire fabrication area be

free of flammable dust and vapors, regardless of

measures taken to dissipate charge cumulations.

It would be desirable for the techniques used in

splicing, reinforcement and mending to comply with

the above rule. Flammable solvents shculd be

avoided
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(b) Forces. Aside from safety considerations, electro-

static forces acting on the bare Sail material

would tend to make it unmanageable during fabri-

c. cation, packaging, and deployment. Also, the

_ Sail would be contaminated by the attraction of

airborne particles.
c'i"

(c) Breakdown. There is the possibility of potential

i electrical breakdown through the Sail material,

with unknown long-term effects, possibly from

repeated breakdown along pre-established paths.

(d) Remedies. It is not clear that conventional

industrial static eliminators are the answer to
==

this problem. The opportunity for reaccumulation

throughout the fabrication and packaging processes

appears formidable. One helpful measure would be

=- to maintain high ze]ative humlditv, but this con-

=o

flicts with the requirement for minimizing surface

°_ chemical degradation. The best solution is to

make both surfaces of the Sail "conductive" vJa

coaLings. Then simple provisions can be made to

• avoid charge cumulation. In connection with this

, approach, it is essential to measure the reduc-

" tion of conductlvity,_caused by creasing and

_ crumplin B of candidate coatings.

(7) Fabricability/Reproduclbility

_°.,, (a) The Sail design will impose dimensional tolerances

to assure that the fabricated Sail will fit the

_ _,. interfacing structure. Therefore, answers are

. needed to the following questions:

I. What Sail dimensional deviations can be

_--_ expected with a given material and fabrJ.ca-

tlon process?

zi
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2. Can the interface design accommodate the

foregoing deviations, or will it be necessary
.i

to trim the Sall to size after (or during)

fabrication?

,. 3. How will the problem of Sall thermal

o expansion/contraction be handled with
o

respect to: (I) Sall acceptance inspection?

(2) Sall deployment?

o

• (b) The huge size and fragility of the Sall pose unpre-

° cedented fabrication problems, hence, fabrication

concepts should be viewed as tentative and initial

fabrication efforts as experimental. A crucial
o ,

failure mode associated with Sall manufacture is

• failure to detect and reject a defective product.

Another serious failure is a fabrication defect

.. that cannot be repaired. It is submitted,

therefore, that prime attention should be given

._'. to the following items when evaluating Sall fab-

• rication concepts;

(1) Plans for in-process quality control and end-

" i product verification and (2), potential manu-

fl_", facturlng defects and associated repair processes.

(8) Blockln s

Assuming that the Sall is packaged in a tightly compressed

. " conflguraclon, either folded or rolled, it is important to account for

any adhesive effects which accompany unfurling. Such effects may be a

" function of storage time, initial compaction, or vacuum degasslng.

" They may also be different for unfurling in vacuum than in air, and may

_ depend upon the rate of unfurling and angle of pull. Blocking is also

discussed in the section on .Iolnlng and Handling where a test is pro-

_f posed to determine these characteristics.

_':, (9) Ascent Temperature Profile

,, The ascent temperature profile may not pose a threat to the

Sail. Routine analysis will cover the purely temperature aspects.
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--.":_..... However, secondary effects to be evaluated include (1) freezing of

° condensed moisture, (2) congealing of lubricants, and (3) binding
'i

caused by differential expanslon/contractlon. Any of these could cause

deployment failure.

(i0) Ascent Pressure Profile

The Sail is assumed to be stowed in a compact configuration,

"_' either folded or rolled. The latter is the proposed method for the

_ Hellogyro. It is uncertain how much air or other gas will be trapped

between layers or in the bonded joints during the stowing process.

- _ During ascent to space vacuum, any trapped gas will tend to expand, with_ .....

i possible damage to the Sail and/or the Sail container.

_ .... Therefore, it will be necessary to devise a test to simulate

_' tho reaction of the stowed Sall when exposed to vacuum. A vacuum expan-

• slon test should also be made on samples of all bonded Joints. Note

_: that the container vents must be designed so as not Co be obstructed

by possible expansion of the Sall package.
,'',,

• If a problem is found, one solution might be to vacuum

..... degass the complete Sail. This could be done as a conditioning opera-

_"'=i_ tlon to remove as much air #s possible or as a quality assurange check

_," to verify compatibility with the stowage container, or for both

reasons. Small perforations in the Sail sheet at predetermined inter-

vals might also be considered as a means for minimizing the potential
!

_ _.... of this problem.

i_ (il) Coatln_ Susceptibility

Analysis of Sail performance requires that working limits

i be established for the values of optical and thermal properties of the
I ,i

i i Sall material. This is made difficult by various adverse environments

I ! which work to alter the initial values. For the period from Sail
I : o

fabrication through deployment, the moat critical environments are

_" those which threaten surface coating
the characteristics, as follows.
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D

=_ CRITICAL ENVIRON_4ENTS POTENTIAL DAMAGETO COATING

: (a) Exposure during Oxidation, other Lh_mical

fabrication to reactions.

i ambient air at

_i normal levels of

.... contamination

.:! and humidity.

! (b) Fabrication, Puncturing, cutting, tearing,

handling and stretching, _reaslng, wrlnk-

ii packing, Inciud- llng, cracking, sloughing,

l:"

ing exposure to abrasion, overheating,

tools, fixtures, chemical reaction.

I containers,

2:1: ohemicslproc-esses,heat
'I

=_l processes, for-

.....el eign matter.

14 (c) Transportation Abrasion, moisture conden-

_.! and storage, in- sation, fungus growth,
i
I cluding jolting accelerated chemical

_i and vibration in reactions, sticking or

i folded condition, blocking.

_,_i Also, breathing
i.i

caused by diurnal

temperature

changes, con-

_[ stricted ventila-

I, tlon because of
"!

! tightly-packed

i and/or contained

condition.
,!.

i•
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_. CRITICAL ENVIRONMENTS POTENTIAL DAMAGETO COATING

_. (d) Deployment, Abrasion, stretching,

including tensile cracking, debonding, tearing

_ and peeling loads

associated with

_ unfolding layered

ill. stack, and contactwith structure.

Unless more is known about the ability of the Sall material

to withstand these environments, it wlll be necessary to take extreme

control measures and then to assume that degradation has been precluded

I or limited to some arbitrary level. This approach tends to be expen-

_i sive on the one hand and to lack credibility on the other. Appropriate

_J tests would provide indications of the level-."of protection required to

_ keep the Sall optlcal-thermal parameters within prescribed limits.

_[[ It was proposed that tests be conducted on the coated Sail
material to determine changes in optical-thermal properties as a func-

fL

L: tion of various treatments, as follows:

i. Stretchlng-relaxation, unl- and bi-axlal.

i One-shot samples, load increased incrementally.
2. Creaslng-flattening.

Samples with different crease spacings and representa-

tive compactions.

3. Random crumpling - flattening.

Test with various degrees of compaction and repetition.

4. Abrasion.

Test to simulate fabrication processes and transporta-

tion vibration.

I
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5. Atmospheric exposure•

• SeJnpJes in controlled S.L. atmospheres at different

• temperatures and humiditt_s. Test at intervals over an

extended period,

_1_: 6. "Blocking" effects.

.... Samples folded and pressed together to simulate bottom

layers of stored Sail. Test after an extended period

in storage environment. Measure sticking tendency as

well as optical-thermal changes•

-._ ?L,

: 4.4.1.2 Failure Preventive Action Integration. After a potential

_,_ failure mode had been identified, evaluated, and found to require pre-

ventive action, there was the task of integrating the requirement into

the Sail fabrication program. Such actien may involve any or all phases

of the fabrication program. To stress the possible number of places

: where preventive action might be appropriate, a hypothetical fabrication

_: program outline was developed which was useful as a checklist or as

o :i the basis for a matrix to insure complete integration of preventive

°i actions• This hypothetical outline included: design criteria and

_ requirements; engineering drawings and specifications; design verifica-

tion requirements; manufacturing, including procurement, production

planning and control and quality control; and operationsf,, •
!

_.. 4.4.1.3 Space Failure Modes Analysis. The first step in analysing

space failure mod=s was to develop a generalized fault tree.

(Figure 4-23). This provided a picture of the interrelationships

°_ between failure causes and effects. Failures that include "upse_

thermal balance" as an effect, appear most significant as they boot-

strap through the system causing further performance degradation.

° i A failure interaction matrix was developed. Figure 4-24

is a reduction of the large working chart where approximately 200 items

i were compared one against the other to record that: i) a failure mode_j _B

l

definitely exists, 2) a failure mode possibly exists, 3) a failure mode

I does exist. Arithmetical summaries were made of the _n-space failure

I
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_ interaction matrix. It is significant that "synergistic" interactions

: ranked first In a summary of items of positive and probable failure
• interactions. An individual Sall property may be satisfactory at a

given environmental condition; however, mission success requires all

properties to be satisfactory over the accumulative mission history.

The Sall will experience an accumulation of solar radiation, erosion

and cyclic loading. In addition, wrinkling, solar dust coating, creep,

....:_ and possible warping from static charge will affect Sail shape and

°_. influence propulsive efficiency and thermal balance. Physical property

_, tests, electro-static property tests and optical characteristics tests

L as depicted in Table 4-23 should be made at various significant stages

___ ! of the mission at vacuum ambient pressure and with the appropriate Sail

: temperature and cumulative solar radiation.

_ The arithmetical summary was exercised to develop a failure

_ ! interaction "order of significance" of primary subjects. A tabulaclon

_ of the ranked order of significance ir_ the categories; components,

_o. characteristics, environment, and fai_'ure in_eractlon frequency is
given in Table 4-24.

_, A correlation was then begun of the high probability failure

o' interaction modes with test da_a requirements to identify significant

characteristics. Plans were to obtain the necessary test data and then

' perform analyses to demonstrate that the Sail design could accommodate

the suspected failure modes and accomplish the mission.

The aforementioned correlation wa3 performed, resulting in

o_: several pages of tables giving a r-_vlew of t_e high probability failure

ii_ modes and interactions with assignments to vat lous technical specialty

groups such as materlals, structures and dynamics, attitude control and

mission design, to perform either tests and analjses to verify the Sall

design. These are included in Appendix II.

#
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Table 4-24. Failure Interactions Order of Significance

Sail Sheet Material Failure Interactions

Components Order of Significance

i. Film
2

2. Bonds

, 3. Rip Stops

• 4. Reflective Surface

Characteristics Order of Sisnificance

I. Contaminants 14. Substrate Bonds

__ 2. Mat'l. Specs. 15. Foldability

= 3. Aging 16. Polymer Orientation

" 4. Life-Time Prediction 17. Pin Holes

: 5. _emp. Characteristics 18. Electrical

6. Processing Specs. 19. Ionization of Sall Mat'l.

7. Tolerances 20. Resistance to U.V.

8. Thermal Expansion 21. Optical

9. Strength 22. Coating Interactions

,, i0. Uniformity 23. Pigmentation

ii. Bend Radius 24. Reproducibility

_ 12. Attractive Forces 25. Mass

o 13. Coating Thickness

Environment Order of Significance

ol. Thermal ell. Trajectory

02. Sail Loading x12. Launch Loads

03. Shape o13. Center of Pressure

04. Reefing o14. Vibrations

, eS. Space Vacuum elS. X-Ray

• e6. Electrlcal Charge o16. Solar Wind

o7. Reorientation el7. Micrometeoroids

e8. Occultations el8. Cosine Angle (Sun)

09. RCS Dynamics x19, Condensation on Surfaces

elO. Photons x20. Human Handling
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Table 4-24• Failure Interactions Order of Significance (Continuation i)

Environment Order of Significance (Cont.)

i NOTE

_ii • ffi space environment

_i i o ffi space loads environment

=: x = latent ground & launch environment

Failure Interaction Frequency

i. Puncture 6. Surface Erosion

2. Coating Failure Leading 7. Crosslinking
: to Base Failure

!' 3. Debonding 8. Depolymerlzation

4• Craterlng 9. Desorption

5. Dust (Solar Coating)

_ 4.4.2 Long-Term Service Projections from Predictive Tests and
=_, Analyses

i 4.4.2.1 Evaluation Methodology. The properties of materials in

_o_ general, and polymers in particular are manifestations of their chemical

state and morphological states. The chemical state and morphological

: state may change as a result of aging and the changes will be zeflected

o changes in properties. Thus, the rates of chemical changes and morpho-

-_'_ logical changes provide the basic guidelines for service llfe prediction,t

° -- even though the correlation between structures and properties may not

°_". be linear.

_ As _ result, the properties of the materials may show syste-

matic deterioration. Since it is essential that the selected materials

and the fabricated Sell have a very small rate of performance degrada-

_ :, tion in space to assure mission success, an effort was directed towards

analyzi,,g available test data of the Solar Sell materials. This data

had been published in the literature or generated from the test pro-

grams performed specifically for the film, coatings, or bond Joints that

were conducted to evaluate service llfe in the anticipated space

environment
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i:
The Solar Sail materials may degrade as they are exposed to

_, various individual and combined stresses such as:

; (i) Thermal

(2) Mechanical

z_o ': (3) Environmental, ---e.g., UV, ionizing radiation,
i " i_'.
.i

i!l_i contaminatione

Most of the parametric tests that were conducted were made

• i; to enable performance characterization rather than long-term prediction.

'i_ :i: Thus, in this portion of the Sail performance evaluation, predictive

!_=_ models were formulated based on chemlcal-physical theories. The pre-

dictive models also provide a basis for accelerated test program design.
,r,

_2=_ The plan was to check the validity of the model through comparison with

_-_- actual test results and subsequent modification where appropriate. The

_-:' verified models were then to be used as a basis for materials evaluation

: and seleotion.

_ _,._, Chemical degradation rate served as the basis for service

'_ " life prediction and for formulation of predictive models for the basic

ii7_ _, film. For Kapton and other high temperature polymers selected as the

__ _. most viable candidates, information about morphological changes is

' ' almost nonexistent and as a result these effects on the service life
r,

were not taken into account. Formation of paracrystalllne structure

...." :" accompanying improved tensile strength has been reported for polyimide

: annealed at temperature ranges of 150-400°C 1'2. Therefore. it is

_. expected that morphological changes of the basic film caused by thermal

annealing in space may improve the mechanical properties. The morpho-

! logical changes may cause slight changes of the Sail dimensions but

_ . these can be easily accommodated by minor design modification such as

!5'' _' the use of springs between tendon and Sail sheet on the blade panels
of the Heliogyro.

The adhesive Joint service llfe prediction requires quantl-

tative knowledge of aging, of interfacial chemistry, and viscoelastic
,., I
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..oi properties of the adhesive as well as changes in the fracture mechanics

,_ of the adhesive Joint caused by aglng 3. Since this quantatlve aging

information was not available, a predictive model was adopted for the

. predictive testing design. This model has been shown to give reasonably

• good llfe prediction for five structural adheslves 4._C

i.

Initially, only the effects of thermal stress and high

vacuum on aging were considered In preparing the models• Since the esti-

mated stress level of the Sail is only 3000 psi during handling and

__: considerably less (_0.5 psi) during flight, the effect of stress on

!- aging is expected to be negligible. UV and ionizing particles are
%

_ detrimental to the bare polymer films but these effects are negated

....." through proper adjustment of the metal coating thicknesses.

• 4.4.2.2 Basic Film Predictionso' •

" (i) Thermal Degradation of Kapton

. Polypyromellitimlde (Kapton) will be thermally degraded at

elevated temperature. Different reaction mechanisms accompanying dlf-

: ferent degradation rates will occur at various temperature ranges.

'_ Pyrolytic studies 5 and mass-spectrometrlc studies 6'7 of the thermal

degradation of Kapton in vacuum and in inert gas (helium and nitrogen)

= environment have concluded that the major mechanisms are:

(a) Hydrolysis of amide groups (due to incomplete

., cyclizatlon),

!ii (b) Decomposition of Isoimide groups, and

_, (c) Decomposition of imlde groups

Activation energies and frequency factors for the reactions are sum-

marized in Table 4-25 and Table 4-26 presents the proposed degradation

mechanisms. The extent of degradation of Kapton due to the latter two

,, mechanisms at 250°C, in two years, will be negllglble and only the

• hydrolytic breakdown will cause severe degradation of Kapton. How-

ever, the hydrolytic degradation may be reduced by heating Kapton film

at elevated temp-rature in inert gas or under vacuum to remove the

absorbed water and to maximize Imidization of the uncyclized amide units.

• 4- lO0
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Table 4-25. 'Thermal Degradation of Kapton H-Film

Frequency ActlvaClon
Factor Energy

i Chemical Degradation (sec. -!) (kcal/mola) Reference

Thermal Breakdown of 1015"9 69.3 5

Imlde groups in Kapton
under vacuum (400-822oc)

Thermal Breakdown of i0II 47.9 5

IRc_alde groups in
Kapton under vacuum
(below 500oc)

. Thermal Degradation of - 62+9 6

_ Kapton H-Film in --
_ _i nitrogen (426-510oc)

i_ ..... Hydrolysis of Amide - 10-20 7

_. Group at 150-160°C
i •

. The cycllzatlon is very slow at temperatures below 150°C. At higher

temperature, the cycllzation is characterized by an initial rapid reac-
8

tlon followed by a slower cycllzatlon process . It has been reported

_ that heating Kapton film at 250°C under hlgh vacuum for one hour resulted

in almost complete cyclizc=ion 7. Thus, by preheating the Kapton fllm

at temperatures in the range of 300 to 350°C under vacuum for a few

'oi minutes, may stabillze the film to the extent that thermal degradation

_-- at 250oc for two years is negligible.

• The degradation reactions appear to be the flrst-order

reactlons 5-7 Consequently the degradation kinetic equation may be
_ ' 9

j,_ , expressed as .

dWi = Aie -AHi/RT Wt (1)":_ dt

o°' where Wi ffi weight fraction of species i, Ai ffi frequency factor, AHI =

activation energy, R = gas constont and T ffi absolute temperature. From

equation i one obtains
i

,". Wl(t) = e-t/I I (2)
wi(o)
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'_ Table 4-26. Proposed Degradation Mechanisms

• (a) MECHANISM OF THERMAL DEGRADATION OF IMIDE GROUPS IN H-FILM

_, O O
I 0

c -_C" I_-I _ _-'_. ,_

. _ \-co a/.
_C.N-_k-o _ \ o ,I,

0-0% 50-a-""-°-°-O-

' (b) THERMAL DEGRADATION OF ISOIMIDE IN H-FILM

°' R
I

O N
II II

_= )t N --_')/_V--O-_CO,- POLYh,ER RESIDUE
II

__ t.

and

i_'. w(t) = l?,wi(t)= _[_wi(o)e-tl_i (3)
i $ ,..

where
p= •

[

I. AHI/RT

!'i Ti - A_e (4)

: Wl(o) and Wi(t) are the initial weight fraction of I species at time

zero and ttlne t respectively, W(t) is the weight fraction ,.f the sample

at time t. Equation 3 resembles the equations used to represent the

",. viscoelastic properties of polymers and, consequently, tlme-temperature

. superposltion should also be applicable in this case.

o

Z

4-102



o

720-9

Figure 4-25 shows the superimposed curve using the
i/ I

_ isothermal weight loss data of Kapton reported by Heacock and Beer9;
't .

[ 520°C was chosen as reference temperature. The shift factor (a) followsn

the Arrhenius equation and gives an activation energy of 57.6 Kcal/mole,

i° as shown in Figure 4-26, which is between the activation energy of

isoimide decomposition and that of imide decomposition (see Table 4-25).

This is probably due to dhe fact that, although decomposition of imlde.o

° groups is the dominating mechanism at this temperature range, decom-

_i position of isoimide still makes some contribution to the isothermal

I o_ weight loss and thus the activation energy obtained is in between.

Using the time-temperature superposition principle one
r

could estimate the amount of weight loss at 250°C in two years from
o ,'

, the data in Figure 4-25. The amount is nearly zero.

NASA-Ames Research Center reported an activation energy of

49 - 50 kcal/mole of thermal degradation of Kapton in vacuum at 300-

400°C temperature range from measurements of the optical density of the

• film at 6000_ wavelength I0. Judging from the magnitude of the actlva-

tion ener6y and the temperature range of decomposition, it appears

likely that this is due to the decomposition of isoimide groups.

i

!_°,i; Tests carried out at JPL reported substantial weight loss

]- : of Kapton (0.049% in 4 hours at 250°C and 0.27% in ].8hours at 300°C II.

_-::? This probably is due to the fact that these samples had not been given

i sufficient heat treatment (annealing) to remove the trapped H20, CO2<

_ and solvent or other organic compounds. Also as mentioned earlier,

_ i annealing tends to make imidlzatlon more complete and thus eliminates

@!; the weak sites for p_ssible decomposition, e.g. hydrolysis, to occur at
low'temperature.

Based on these analyses, Kapton appears to have the thermal

......... stability required for the Solar Sail mission. However, a thermal

rJ' annealing treatment of the Kapton film prior to Sail fabrication may be

> necessary to prevent hydrolytic breakdown.
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A LINEAR REGRESSION YIELDS THE EQUATION.

"" x 104_ InA = 1-2.90 t _5) "N36.4 = 5.21

!.

FOR THIS DATA.

" ' AT250°C INA=53.4 _19.1

,. c Je

°_" &H=57.6-_B.9 k¢ol/mole

_:i 2.00 --

o.0."

+•' 0

e:"

- 0._ I I I I
: 1.00 i,05 1.10 1.15 1.20 1.25 1.30

_i InA Temp. "I, 10"3°K'l

__+___ Figure 4-26. Graph of the Shift Factor inA, vs. Temp -I

+ : (2) Effects of Thermal Aging on Mechanical Properties of
diam.

%

i ] Deter-_ratton of mechanical properties as a consequence of

thermal aging can be represented by the Arrhentus equation, as shown

in Figure 4-27a and 4-27b 12. Tne kinetic parameters of deterioration

are summarized in Table 4-2612-13. One may note that the activation

; energy for samples with thermal treatment before aging is between those

: : of imlde breakdown and isolmlde decomposition and close to that fromr

isothermal weight loss measurement, while for samples without the heat
13

o treatment the activation energy Is very close to that reported for
_ 7

' hydrolysis of amide groups . Thls seems to indicate a close correla-

° ¢" tlon between chemlcat degradation and mechanical properties deterlora-

tlon. Using the kinetic data presented in Table 4-26, the tensile

strength and the ultimate elongation of Kapton aged at 250°C are calcu-

lated as a function of aging time, as shown in Figures 4-28, 4-29 and

4-30.
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._. _ ELO._.._T,ON(x _o",""" _E 3%,. Kcol.e,4

dot)

.... 1.4 1.5 I.6 1.7 1.8 I.9
x.. :

-, ,: I, T X 103

Figure 4-27a. Effect of aging in air at 300oc on the physlcal pro-

- pertles of H-film. Linear relationships are apparent
: for each property.

_'_ " 20 ELONG I0

_= . 20-
b.

• I0

;:.:, 4
3
2 -

(Xg.-Cm., NH.) v
! I I ! I I l 1 1

0 I 2 3 4 5 6 7 8 9

._ TIME IN WEEKS

Figure 4-27b. Arr_lentus plot (_f physi('al property dett,rloratlon.
• Again a linear relationship is obtained.

q
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Table 4-26. Property Deterloratlon Rate Parameters In Hellum d

--_- _E KIO0

Property Po Kcal I/hr

__ A) Sample Outgassed at Elevated Temperature Before Aging

0_. Elongation (%) 70 55.4 + 1.7 0.0050

.... Impact Strength

, (kg-cm/mll) 6 51.].+ 2.7 0.0029

Tensile (psl/lO00) 23 55.5 + 1.3 0.0019

_ B) Sample Not Outgassed Before Aging

_ Tensile Strength -- 17 + 4 --

, : and Elongation

"'4

From these results, one may conclude that at 250°C in two

years, Kapton will not have detectable deterioration of its mechanical

properties, a conclusion in agreement wlch chemical degradation results.

(3) Creep_ Thermal Expansion Coefficient and Thermal
Shrlnka_e of Kapton

_,'r_' It appears that morphological changes of Kapton due to

_,i thermal aging may be the factors which will affect long term creep,

' thermal expansion and thermal shrinkage (shrinkage occurs at constant

_.-. temperature), because chemical degradation is expected to be negligible.

Data on rate of morphological changes of Kapton are not available pre-

_' sently. However,.the morphology of the Sail film materials may be
i

stabilized by proper thermal treatment.

• Long term creep of Kapton H film under a load of I0 psi at

250°C was calculated from stress relaxation data reported by Shen et,
_" 14

el. , and is shown in Figure 4-31. The approximate equation proposed
15

by Leaderman .

! D(t) = (sin m_)/m_ E(t) (5)

i

d Io_E(t)_ m = (6)
d log t

! ,(t) = , D(t) (7)
! O
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TENSILE STRENGTH v), TIME
_._. t FOR KAPTON IN HE

' 24xl

2(1

_:i 18

Z 14 O• %
12 TA _ AGING TEMPERATURE-- TESTTEMPERATURE-- 23°C

Z l0
_. O EXPERIMENTAL POINTS AT

8 300oC F_M IX)PONT
BULLETIN H-2.

6

12 " I I I
.....<_ 101 102 103 104 105 106 10I0

,_ .' TIME, hrs.

Figure 4-28. Tensile Strength vs. Time for Kapton In He
ii'_

_= was used for the calculation, where D(t) = tensile creep compliance,

E(t) ffirelaxation modulus, o = applied stress and t:(t) creep. The
O

- _._ experimental data, _J_Lc_hwere measured under a load of 50 to 200 psi,

_,,. were converted to i0 psi. The experimental data, after the conversions,

were further multiplied by a factor of 4.3 to take into account the

_ i fact that the Young's Modulus reported in reference 16 is higher than

that-reported in reference 14 by a factor of 4.3.

The samples were annealed at 300°C for a week in high

_ vacuum prior to the experiment. Agreement of the experimental data and

/ the calculated values is reasonably good. The large scatter of the

o experimental data is believed due to thermal fluctuation of the sample
i

" chamber and ground vibration.
_t

t

,>

L,

4-I08



-,._,/._ ,,

_' 720-9

I I I l I I I t I

•"_ IMPACT STRENGTH w. TIME

...... ._ (TAKEN FROM HEACOCK & BERRa 1965)

t

.E _t1:

:1 o _.'

L TA = AGING TEMPERATURE

_:: 2.c
ii o-._.:._: TEST TEMPERATURE= 23°C

:_• 1.0

't ,-_. : 2 YR YRS

_.___.... 0"000 i01 102 103 104 105 106 i07 108 )09 iO I0
_=i...... ;:: lIME, hn

_ :,

__- Figure 4-29. Impact Strength vs. Time for Kapton in He

=_i To check the predlcted creep at times inaccessible to

_._,_ : experiments at 250°C, creep measurements at higher temperature were

•:'_:_-'_:_'_. perfor._ed. Figure 4-32 presents predicted creep at various tempera-

tures and experlmencal values at 300oc and 45°C. Again, agreement is

fairly good.

:;_-'!i;i__ Table 4-27 summarizes the dimensional change of basic film
_:__;.__:: due co creep, thermal expansion and thermal shrinkage. Long term ther-

:: mal shrinkage of g_pton is not known. The creep is calculated with an
:--_----_ assumed load of 50 psi, which was the estimated maximum loaa on the

_......... square SaiI configuration. The actual load during the cranking orbit

_= "__.._... was estimated to be even less.

i/&
' "u
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ELONGATION vs. TIME

FROM HEACOCK _ BERR(1965)

50-

o

o°:I z" 40 -

N Soo 3o- ,.-,

"I'_'_: 20 - TA = AGING TEMPERATURE

,.
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, ". I0-

.... i: YRS

0

10° 10"_ 10
• TIMP., h_

Figure 4-30. Elongation vs. Time for Kapton in He
t

= . _, O.I.I I I I I I 1 I I I

0.12 - " CALCULATED FROM NBS REPORT _

O EXPERIMENTAL DATA FROM JPL

• : (NORMALIZED TO |OpslAND CORRECTED

_: O. I0 TO INCLUDE INTIAL ELONGATION AND -TO ACCOUNT FOR DIFFERENCES IN THE
_': JPL-MEASURED AND NBS-h',EASURED

., MODULUS)

_.06 C3 ' --

% ..11o

r-

•" .U, -- _ ....

h i [ i [ . , _ i
• i 2 i _,

Figure 4-31. Extrapolation of Creep vs Time for Kapton at 250°C
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:: //

:: _ 0.04 t• M,II
e.e

=o_ U

.,:. 45

,5

0
LOG TIME, see

Figure 4-32. Predicted Creep of Kapton at Various Temperatures

o

Table 4-27 Dimensional Changes Due to Creep, Thermal
Expansion and Thermal Shrinkage

• Creep @ 59 psi* Thermal Shrinkage

at 250°C in two Thermal Expansion (in N2 at 264°C for
years. (from -I00O to 250oc) three days)

" _ 3.3 x 10 -3 in/in 1.02 x 10 -2 in/in -3.3 x 10 -3 in/in**

' (2.9 x 10 -5 oc -1)

• I

*calculated value

: I **S.D. Hong, Solar Sell Monthly Report, July 1977

I
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(4) Tensile Strength of Kapton as a Function of Mission
.... Time

From the discussion and data in the portion on the effects

of thermal aging on the mechanical properties of Kapton, one may express

__ the tensile strength of basic film during the mission as

o _ Oo(T,t )e -Kt"o o o (8)
6

where K = Ae-_H/RT, and t = mission time. Since the temperature during
• O

_.. the mission is estimated to be below 250°C, and the Sail is expected to

_ be exposed to the high temperature for about two years, as shown by

_ Figure 4-32, using the kinetic parameters in Table 4-26, one has

-Kt
:i_ • o :_ i (9)

' So o = Oo(T , to). The tensile strength may increase due to annealing.

• In general the tensile strength of glassy polymers is found to linearly

...._ depend on temperature, as shown in Figure 4-33. From Figures 4-32 and

...._ 4-33, the tensile strength of Kapton film as a function of mission was

_: " calculated, as shown in Figure 4-34. In calculating Figure 4-34, yield

_ strength instead of breaking strength was used. The target requirement

of 4000 psi and 50 psi were estimated values during ground handling

o_: and during cranking around the sun. One can see that the safety margin

is about 160.

4.4.2.3 Adhesive Joint

(i) Model for Lifetime Prediction

The performance of adhesive joints is a complex function of

bonding chemistry in the interface, viscoelastic properties of the

• adhesive and fracture mechanics of the adhes_we Joint. A detailed

analysis of fracture mechanisms in an adhesive Joint for lifetime

prediction under some specified service conditions require quantitative

knowledge of the relevant chemical, physical and mechanical factors

prevlously cited. Since these detailed elements of quantitative know--

ledge are not available, a modified Prot model was used for proof

testing.
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...... Figure 4-33. Yield Strength vs. Temperature for Kapton
',i" 17
o.:_ According to this modified Prot accelerated test scheme,

• the time to break, tb, of a structural joint under stress, Sb, may be

: given by

,:o_ J-,- L

K

_r t b = (Sb_2EL) (10)

where

K = mater_.al constant

EL = endurance limit

. Sb = applied shear stress

: ii̧ j
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I Recently, Lewis, Kinmon_h, and Kreahling 4 applied the modi-fied Prot model to test five types of structural adhesive Joints

i (adhesive on aluminum substrate). They found that, within statistical

scattering, the ratio of m. and lap shear strength (designated hereafter

as LSS) is a constant independent of temperature, geometry and modulus

:: of the bulk adhesive. Their results from long-term tests (up to 36,000

o hours) have reasonably good agreement with the prediction from short-

-,_ term accelerated load tests. Thus, despite theoretical short-comlngs,

oj°'_ the method seems to be a reasonable model for predicting the lifetime of

= '_ an adhesive Joint.
i

!_ Because of time limitations, it was not possible to restruc-_

_i ture the instrument to measure the endurance limit of the adhesive

: Joint. Thus, we will assume that the ratio of endurance limit and lap

_ , shear strength (LSS) of the adhesive Joint is the same value as recom-

.... mended by other investigators.

EL/LSS = 0.25 (ii)

_
The value of this ratio may change as a result of aging of the adhesive

joint. This will have to be determined experimentally. However, we

_-: will assume for the NR-15OB2G adhesive join_, the one selected as the

....: "benchmark" design for the Solar Sail, that the ratio of endurance

limit and lap shear strength does not change due to aging. Combining

Eqs. I0 and Ii, one obtains:

2K

,, . t b = 2Sb_LS S (12)

Eq. 12 implies that, if the lap shear strength of adhesive joint (LSS),

•_: remains higher than 2Sb, the adhesive joint will never f_il. The cri-

,/, teflon of LSS larger than 2Sb wili be used as a measure of service llfe

of the adhesive joint.

,_ (2) _Analysis of 'rest Results

The peedicted shear strength of adhesive joint as a func-

tion of n,isslon time is shown ir Figure 4-35. The prediction was
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calculated using the degradation rates of the accelerated aging tests

presented in the section of this report on Joining and handling with

the following assumptions:

,i (a) No degradation occurs at temperatures below

__r_ 220°C (there are no data available to assess

degradation at lower temperature)

(b) Temperature dependence of the shear strength

_' of an adhesive joint is linear.

(c) The degradation rate follows the Arrhenius

......_ equation.

=_:. The shear strength of the adhesive joint at temperatures other than

250°C and -60°C was obtained by interpolation. Because of the limited

amount of test data available, there is great uncertainty in the magni-

tudes of the calculated degradation rates. Thus the predicted shear
strength of the adhesive joint that is shown in Figure 4-35 should be

, considered to be tentative. The target properties represent 2Sb (see

ii eq. i2), where Sb is estimated to be 3000 psi during ground handling

°_ and i0 psi during the cranking orbit.

_o r'i

_: Figure 4-36 shows the degradation rates for adhesive joints

_-' that were aged at 240, 270 and 305°C. It is apparent from this data

that samples aged at the higher temperatures have the lower degradation

=_: rates. This is just the opposite to what one would expect for thermal

: degradation behavior.

: The shear strength of the adhesive joint may be af:_ected by:

i:
, (a) Chemical changes in the interface and in the bulk of

the adhesive,

! (b) Development of weak bond layer, and

: (c) Transcrystalline structure in the interface.

Since no morphological studies were made of the interface for the

polylmlde, the effects of a weak bond layer and a transcrystalline

structure on th_ long-term shear strength of the adhesive joint are not
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-:, Figure 4-36. Adhesive Joint Degradation

Pates at Three Temperatures

certain. On the other hand, the chemical characteristics of the Inter-

= ". face may be affected by the presence of solvents and the degree or
_._

. _o_.: extent of curing. It is generally well known that strong solvents can

deteriorate inte:faclal bonding while extended post curing enhances

:_"_'_.ii'_' bonding. It is speculated that the apparent abnormal degradation

_ behavior observed for the aged adhesive Joints may be attributed to

the combined effects of curing, degradation and the presence of the

solvent N-methylpyrolidone in the interface. The boiling point of

n-methylpyrolldone is 202°C. When it is mixed with NRISO-B2G adhesive,

o the boiling point is expected to be higher than 202°C (probably close

_ to or even higher than 240°C). Consequently, the amount of solvent left

'i in the adhesive (and the interface) will be increased for samples aged

° at lower temperatures. Furthermore, the samples aged at the higher

temperatures probably received better curing in the relatively short

aging period '['hismay explaln the lower degradation rate for the
Q , I

samples aged at the hi =r temperatures.
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4.4.3 Space Effects Testing

Simulated space environment testing was generally performed

_ only on the prime Sall film candidate materlals_ either uncoated (for

worst case purposes, e.g. to simulate areas where coatings are absent via

. cracking, peeling, etc.) or coated with the "benchmark" metalllzations

i (aluminum and chromium). Testing was performed in various areas to

determine the effects of:

=_i (i) thermal degradation

--_:_ (2) ultraviolet radiation

(3) gsmma and neutron radiation--

_• (4) combined particle and ultraviolet radiation

_ (5) electrostatic charging

• Additionally, computer simulations were performed of the

'_ absorbed nuclear radiation dose over the mission.

_,;, In the conduct of the tests, there were cases where specimen

_ size detrimentally influenced the test results. For example in the

"°" series of tests at Boeing to establish the effects of UV and proton

ii radiation on "free standing" metalllzed films, the thin, narrow, test

_i strips tended to curl and twist in the radiation beam. This severely

_: impacted the thermal, balance of the specimens and greatly accelerated

_.:: the thermal degradation. Long narrow strips resulted from an attempt

to maximize the number of test conditions-(combinatlons of film types
and coatings). The available sample area exposed in the special test

_i chamber was limited. It was concluded that in future tests, the film

...-,:• samples should be largerin dlmenslor_ and possibly be framed. A major

_i problem faced in the Sall program was the extremely short time limit for
_'_;i obtaining data, which may have preempted sound experimental procedures.

_i,i; Kapton, the primary candidate for the Solar Sall basic film,

_i.i is thermally stable in vacuum to temperatures in excess of 500°C, but

does undergo some thermal darkening near 400°C and up. 'rhcse temperatures

_:, are much higher than the expected highest Sail temperature of .ear 2t_t)°C
_ !
_+_.
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_/i : where the temperature control coatings are employed. Despite its excel-

_ lent thermal stability, Kapton has been experimentally observed at both
i

+.... JPL and NASA-ARC to be readily degradable by solar UV at temperatures

_/ above 260°C. Exposure of the bare film in vacuum to ii suns of UV while

_ trying to control the specimens at 260 to 300°C resulted in film black-

ening and burn-through in less than 1 day.* Darkening also occurs at i

_ sun, but the rate is much slower. Thus, for the Solar Sail application,

Kapton must be protected from solar UV, e.g., by the reflective coating:

tentatively selected as approximately I000_ of aluminum. Later testing
o

indicated that an increase to ii00 to 1200A might be required to achieve

UV opacity. Exposure of coated films to UV and particulate radiation

under corttrolled and known temperature conditions at JPL and NASA-MSFC

have not identified a problem area. (Exposure testing at Boeing and

_: Brookhaven was plagued with thermal runaway preventing the drawing of
_._
_i'+ any conclusions).

_! To raise the backside enLlttance and aid electrostatic charge
dissipation, coatings are applied; %lOOA of chromium or %1000_ or Indium-

Tin Oxide (ITO) are the most promising. It is uncertain whether chrome
_ 0

at 100A can provide adequate radiation shielding for the Kapton film.

i ITO deposited by vacuum deposition techniques yields conductivecoatings,_ but ion-plated (Endurex) ITO coatings are occasionally insulating. It

is believed that the conductivity of this coating is strongly related to

the proper mix of the oxygen with the tin and the indium ....
!

4.4.3.1 Thermal Degradation. Preliminary tests for thermal degrada-

tion of he Sail film materials were performed on the two final candidate

basic film polymers: Kapton H and C-G BIO0. These tests consisted of

weight loss measurements with subsequent analysis of the cff gassing

products during thermal aging and determination of water absorption rates.

Groups of cleaned and degassed bare film samples were placed in

Later analysis attributed this apparent carbonizing of the films to e

i "thermal runaway" condition.. It was noted that in some locations on
the samples where there was lack of good thermal contact between them '

and the copper heat dissipation block, burn spots or gathered areas

appeared which darkened preferentially in the solar radiation, changing

I their absorptive properties in the process, thus leading to even higher

temperatures and eventual carbonizing and burn-through.

I
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I

I vacuum-sealed glass containers for the thermal aging. Analysis of the

I _ gasses evolved was accomplished using standard mass spectrographic tech-

i niques. The results of this initial series of tests are summarized in

<'_ Table 4-28.
_.

" Thermogravimetric analysis (TGA) was also performed at

i:_' NASA-ARC on Kapton at a heating rate of lO°C/Min, in a nitrogen atmos-

_ : phere. The Kapton film shewed no initial weight loss until 470@C with

.... _ . the onset of significant degra_ation beginning at 570°C. Figure 4-37

!i shows literature TGA curves f_r Kapton heated in both air and under a :,,:.," vacuum of 10-6 torr, indicating the onset of thermal degradation in air

_i i at about 450°C and in vacuum at about 550°C. The latter vacuum result_:._,: essentially duplicates that of the NASA-ARC determination under nitrogen.

_m_ In non-oxldizlng environments Kapton is apparently stable

_ to temperatures up to 470°C, well above the highest expected Sall film

_' temperature of near 260°C. Above 400°C, Kapton is observed to darken.
=

' This was investigated at NASA-ARC with samples of Kapton heated in vacuum

_ at temperatures ranging from 400°C to 600°C. After exposure to high tem-

perature for a period of I0 minutes, the optical density at 750 nm and at

-,. °_ 510 nm of the samples was measured in a double beam spectrophotometer

'i with a sample of virgin Kapton in the reference beam. The electron spin

....... density was also measured. These quantities were plotted versus recl-

--'_....: procal temperature (see attached Figure 4-38). The activation energy is

_,/.. similar for both the darkening of the samples and the production of

-_ unpaired electron spins. This suggests that the darkening which occurs-._..

_i when Kapton is heated results in, or is accompanle_ by, the simultaneous

_' production of a free radical.

_ Subsequently, a detailed test plan was developed at JFL for
e

_e=_#ii more lengthy and thorough diagnostic testing in which a series of coated

..... and uncoated Kapton and BIO0 film samples, placed in vacuum sealed glass

containers, were exposed at various temperatures for varying lengths of

L_,_+-',_ time. The Kapton had been directly manufactured by duPont to a thickness

% of 0.12-0.16 mils. The BIO0 had been directly manufactured to a thick-

"_'_,_": ness of approximately 0.13 mils by Schweitzer. The test matrix included

• exposure times of 3, 6. 14 _n_ 28 days at temperatures of 240, 2_0 and

_.i_ 4-122
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_._: a. Prograrmed TGA curves in static air and in vacuo for an experimental
:_. polyimide nominal bar thickness 0.9-mil. Final cure was 350°C for
:_ 1 hour in air. Sample source Dr. Vernon L. Bell, NASA, Langley

__ Research Center.

: _ . _o"6To_

- o.2- aDo,_oE..._1 .
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_• I 1 I I I I I I
-'_._,I,: I'CO I]00 200 300 400 _00 600 700 800
_;_ii,.,_i. TEMPERATURE°C (l°C/mln m,/m)

__:;_..

b. Programmed TGA curves in static air and In vacuo for a polyimide
:; ether. The thermogram displayed in bzoken lines was taken wlth a

nominal 0.9-mtl film made in this laboratory. It had a final cure
• of I hour at 300°C. The 0.9-mIl Kapton film is from the E.I. duPont

-_.... de Nemours Company. The difference In the two air thermograms
_'_ illustrates the improvement that can be made in a new polymer when

large-scale processing and curing techniques are used.

• Figure 4-37. TGA Curves fdr Kapton Heated In Air and in Vacuo.
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Figure 4-38. Thermally-Znduced Darkening of Kapton Film,?

. 3050C, After exposure, the sample films were removed from the contaitlers

_" and subjected to the following types of testing:

(i) Weight Loss

(2) Dimensional Changes

(3) Evolved gas pressure and its mass spectra

: (4) Fourier Transformation Infrared Transmission Spectro-

scopy (FT-IR)

(5) Dichroism
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(6) Mechanical Properties

....... (a) dynamic tensile modulus at 25°C

::. (b) static tensile modulus at 250°C
....... J_

...._'_i_i" (c) ultimate tensile at 250°C
_;: (d) elongation at yleld at 250°C

:=_= (e) tear initiation strength at 250°C

The data from this series of tests were examined and the

_ results were as follows. After thermal aging at 240°C, there was a

_i gradual improvement of the majority of the properties for both the Kapton

and the BIO0 films. There were small dlmenslonal changes (_0.2% shrink-

age) and slow gradual weight loss. Thermal aging at 270°C resulted in

even more improvement in the properties than was observed at 240°C. The

........' dimensional change was _0.5% for the Kapton at the end of 28 days,

accompanied by a gradual weight loss. The BI00 results at 270°C were

similar to the Kapton except the dimensional change was 0.6% at the end

._°: : of 28 days. At 305 ° aging, there was a gradual deterioration of the

o _ Kapton properties (except static tensile modulus). The dimensional

_",i;:i._ change was _1% with a slow, continuous weight loss (_5.6% at the end

of 28 days. For the BIO0, aged at 305°C, there was improvement in some

_ properties and deterioration in others (notably tear initiation and

...._- _ static tensile modulus). The dimensional change was _,i.5% at 28 days.

._:_' This was accompanied by a slow, continuous weight loss of _3% at

28 days. In examining this data, it is very important to note that

'!_':i the property comparisons were against the initial room temperature

o_ properties for a particular film. The initial properties of the Kapton

film were superior to those of BIO0 and even in cases where there was

' noted improvement of BIO0 properties, these properties did not exceed

_ those of the Kapton. These observations concluded that in terms of

,P_---_." resistance of uncoated film to thermal degradation at 250°C, that the

,:' Kapton was clearly superior to the BIOO. At 270"C, the Kapton was

'_'. clearly superior to the BIO0. At 270°C both films appeared to perform

,_ well within the BIO0 improving, apparently through cross-linking after

_ i0 days of exposure• Up to and including 270°C, both films satisfied

_ ": the target requirements• At 305°C, deterioration of properties begins

.... 4-126
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i ,,.=.. with the Kapton (with a higher glass transition temperature) demon-

i ' strating superior performance.

.i

i

. The thermal aging tests on the metallized film samples were

not as conclusive. There was only a limited amount of metallized,,:

_ directly manufactured thln gage Kapton available for test and also (as

_ noted previously) the narrow metalllzed fllm specimens of both materials

__ curled severely during test precluding the conduct of many of the

_.'. mechanical tests. The following comments apply to the thermal degrada-

tlon testing of these metallized films:6"
6,°,

_i (i) the evolution of gas as evidenced by weight loss

o_ appeared greater than for bare fllm
r ,,_

_: (2) the dimensional changes" were more pronounced, espe-

:_ cially for the BIO0 where it was approximately 2 6%

_i (3) the mechanical properties (where measurements could be

..... : made) were very similar to the bare fiims

_ ii_.

"._. 4.4.3.2 Ultraviolet Radiation. Samples of 2.5 _m (0.i mil) Kapton,_ a

__i_:._ under a continuously pumped vacuum of 10 -7 to 10 -9 Torr, were exposed

_!i _ to 16 suns of UV radiation at a nominal temperature of 250°C. These

_: bare Kapton samples blackened and burned through within 4 hours of

_ exposure. Temperature was monitored from the change in resistance of

_ o a thin metallic strip deposited on the backside of the films.

_= The experiment was repeated with benchmark metalllzed Kapton

film, irradiating the aluminized side. After 120 hours of continuous

i. exposure at 280°C, no visible damage occurred to the film. Modulus and

: loss tangent measurements were carried out and compared wlth controls.

There was no detectable change in film modulus, but there was a slight

. : increase in loss tangent observed for the exposed film which suggested ao

decrease in the metallized band strength. The electrical resisttvftfes
u

• of the metal coatings underwent no significant change during the exposure.

• I
*The dimensional instability of the gl00 is believed to be related to

the uniaxial stretching It received during Its fabrication. This

problem may be alleviated by an annealing operation.

•: I 4-t27
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4.4.3.3 Combined Particle and Ultraviolet. Testing was conducted at

.L tileBoeing Aerospace Company (under contract to JPL) to expose selected

samples of coated and uncoated Solar Sail film candidate materials to

_! combined ultraviolet and proton radiation. Uncoated film samples were

_ initially exposed to ii suns and 1.3 Key protons at a rate of 3 x 109

protons per cm2-second. The tests were designed such that the temperature

: for the uncoated films was to be controlled at 300°C. The coated films

were to be exposed to a proportionally increased 16 solar winds proton

_._i:. flux and the solar UV was increased to 16 suns, and the planned tempera-

: _iii lure was to be decreased to 260°C. The reasons for this were as follows.

='--_i: When the Boeing tests were started on the uncoated films, the initial

_ Sall trajectory was scheduled for _0.33 AU, which corresponds to nearly

_:_ ii suns, and the Sail film system temperature was estimated at about
_,_ .

_, 300°C. After the uncoated film testing was started, but before the

_ coated film testing, the Sail trajectory was changed to 0.25 AU, which

_ Table 4-29. Photothermal Effects in Etched Kapton a

i Sample Treatment b,c Absorbtance of 730 nm
!i £.

.LL_' Alkali-Etched 330 hr @ 350°C 0

330hr 350°c+uv 0.028
_"i 357 hr @ 363°C 0

o_ 357 hr @ 363°C + UV 0.033

o 344 hr @ <50°C + UV 0.031

3 hr @ 470°Ce 0.32

_i Plasma-Etched 330 hr @ 350°C 0

330 hr @ 350C + UV 0.011
,{

357 hr @ 363°C 0

• ',: 357 hr @ 363°C + UV 0.029

aEtched to '_,2.5_Im (0.i mil) thickness from 25 _m starting material

blndlcated temperatures are those of top of hot plate, except w'_ere
. noted

-_ CUV signifies ultraviolet equivalent of i Sun

dRelative to absorbtance at 750 nm for control

eActual temperature In immersion cell
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....• corresponds to nearly 16 suns. Tile revised Sail temperature estimates

_ _ were lowered to 260°C however, because of the demonstration of a lower

• equilibrium temperature for the Sail film system with the use of an

, . emittance increasing chromium coating on the back-side of the film.

The specialized combined radiation effects test chamber

(CRETC) facilities at the Boeing Radiation Effects Laboratory (BREL) were

" modified to meet the test requirements. An "In Situ Mechanical Property

_, :. Test Apparatus" was designed and fabricated to fit the CRETC II sample

•.: exposure chamber so that polymer test samples would face the incoming,
0.

combined beams from existing radiation sources placed around the CRETC II.

'-:i This sample apparatus is shown in Figure 4-39 before integration with the

_ CRETC II vacuum chamber.

,2j'.

Uncoated Film Experiments

_ The purpose of exposive uncoated films was to determine the

......i effects of the combination of UV, proton and elevated temperature on

_ unprotected film, in the event _here were areas in the Sail where metal-

i- lization might be missing because of problems (cracks, creases, etc.)

" associated with stowage and deployment. This represented a worst case

Lo analysis.

__ Test Procedures
L

_'il Test strips of polyimide films were "draped" over temperature
i controlled, copper cylindrical sections (heated to and controlled at

i_-'" 300°C) and weighted with %l-gram masses, resulting in '_,100-psi loading

• throughout an initially scheduled 65-day irradiation period. 'Fable 4-'30

_-'/' lists the eight materials that were exposed during the tests. Relatively

o ' | small changes in sample length could be documented using photographs of

_ '; ! the weights' positions as a function of time. Simultaneously, the irradi-

ated sample faces would be photographed to document changes in appearancv.

The test plan intended to expose separate samples of each _,l
.i

the materials in Table 4-30 for four time periods, i, 14, 30, and b5 days,
|

followed by chemical testing using Electron Scanning for Chemlt'a] Aual,,'si:_

i (ESCA) and dynamic mechanical, testing on a Rheovlbron v[scoelastometer to

4-1.29
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determine the elastic modulus values. The ESCA and Rheovibron test

- specimens were prepared and mounted on the copper fixture specially

• built by Boeing for this test.

; Sixteen "strip" samples were loaded by means of attached

weights at their lower ends and 16 smaller ESCA test samples were placed

in intermediate rows in the test fixture for exposure. Figure 4-40 is a

_ • closeup photo showing all four rows of specimens, for a total of 32 test

samples.

q

The basic plan involved shielding the top two rows of s:_mples

•o :• during the first 13 days of proton and "UV" exposure and then raising the

/• shield for an additional day of exposure. The movable shield is shown

"open" or "up" at the top of Figure 4-39. Thus, the top two rows of

samples were exposed for one day and the bottom two rows received up to

14 days of irradiation. Because of the extensive degradation which

,_ _ occurred in the 14 day test period, tests planned for 30 and 65 days
• ,

_ were cancelled.

i.

o

i"

i

_ Figure 4-40. Array of T¢,_l,_ileand ESCA lent Samples Prepared

From Uncoated Polylmides.
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Interior to the Boeing test faclllty, a Spectrolab Spectro-

sun X-25 simulator was modified to produce ll-sun (electromagnetlc radi-

-_ ;i ation, including the solac UV continuum ('_0.25 to 0.40 micrometers, or

=_,_i,? 5 to 3 eV) from _he simulator's zenon arc-discharge source. Figure 4-41

• o is a uniformity map of the simulator's output beam as measured during

final calibration. The positions of the bottom two rows of samples

_, during their exposure period of 13 days are also shown as overlays on

the simulator's output beam pattern in this figure. Tile "UV"beam was

_;_i: later shifted to expose tlaeupper two rows of samples, which if overlaid

on Figure 4-41 would occupy an equal area.

?_ The 1 3-keV proton beam from the CRETC II proton source was

_: checked out relative to the sample array size. Figure 4-42 indicates the

__..:: proton beam uniformity along the two Farraday cup tracks. The sweep of

_:'_ tbese tracks across the sample array was apparent from Figure 4-40. Tile

...........: "100%" proton radiation rate used during the "flrst test stage" was

'_/ 4 x 109 protons/cm2-sec. As seen in Figure 4-42, it is possible that

-_ the top two rows received somewhat more intense proton radiation.

_ Vacuum levels during the experiment were limited only by

o..... sample outgasslng characteristics. Vacuum as measured by an ionization;"o7

% gauge ranged from 10-8 to 10-7 tort during peak outgasslng periods.

A slde view of the sample ._/T_PO_RYSHIELD
SAMPLES (IST 13 DAYS

_L block would show, from top to bottom, IATOSA" OF 14-DA'{

an upper row of "strip" (weighted)

samples; two rows of ESCA samples,

_i: behlnd whlch are the welghts and ref- 3)
: UV, PROTON: E$CAA

--',_, e_ence lines for the upper row of strip II
r_ " _ RADIATION

_ : samples; and the lower row of weighted E_D J
:: samples. This sample arran_emen_ _s

sketched at the right. Inside _he SAM_.tS

surfaces are electrical heaters, to HEATER .,,,'_l_ll

•'..i provide tile elevated test ter_peratureH

for tilewelghted samples. A thurmo-

couple measures the temperatures of

4-133
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t _ each row of weighted samples• A third thermocouple measures the temper- '

I -," ature of the block on which the two rows of ESCA samples are mounted.

Results on Uncoated Samples

The results of these set of tests were somewhat contradictory
, %

between the 24-hour exposures and the 14-day exposures. Generally, the

_':' most dramatic changes occurred during the first 48 hours of exposure in
=i"

_: the chamber when some samples shrank (Upjohn 2080, _5%, and Ciba-Gelgy

B-IO0, _2%), and the Upjohn material quickly discolored. However, at

the thirteenth day when the shield was raised from the one-day exposure

samples, (to expose these to UV and proton irradiation) the same results

_, did not occur• In fact, degradation was visually Judged to be Just

_, about as severe after one-day of exposure on these samples as on the

• i4-day exposure specimens• It is believed that the temperature and hlgh

s vacuum (for the previous 13 days) conditioned these specimens to the

point that when they were exposed to the UV and protons, they degraded

._: very quickly.

%.

_;_ Aside from the fact that the radiation profile varied from

the center to the edges of the beam (Figures 4-41 and 4-42), the thermo-

_ setting type polyimides (Kapton and TRW electrocast) generally appeared

to withstand the environment better than the thermoplastlc polylmldes

_: (Upjohn 2080 and Ciba-Geigy BIO0)

= As previously mentioned, because of the rapid darkening and

,, general degradation of these uncoated materials, exposure testing was

J" terminated after 14 days. The copper block fixture with the specimens

_ intact was then returned to JPL for disassembly and further specimen
;_

_-: diagnosis. The following general visual observations were noted during

_:_ disassembly at JPL:
[

• (I) All ESCA sample masks were easily disassembled and
' /

• cleanly removed. Black fragments of samples No, 3,

";. No. 5, and No. 8 (14 day exposures) adhered to their

-: masks and were found to be slightly adherent but

• removable.

4-1 34
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,_, (2) All ESCA samples exhibited various degrees of electro-

;-_ ,_: static attraction for the copper surfaces, and with few

L exceptions, were easily removed. Typically, the charred
r _ -

_ o_ black portions of the films were more adherent to the

_'_ copper block. The most notable exception was sample

. No. 2 (14 day) whose edges under the mask were badly

i : ; stuck to the copper block, but surprisingly the irra-

- °i diated area was no___tstuck and easily lifted off. Again

_ _o sample No. 2 (I day) was found to be brittle, easily

_ broken when handled, and exhibited some evidence of

_i:;_: clinging at the edges which were under the mask. As a

:_;, :- generalization, the i day samples seemed to exhibit

_ more overall adherence to the copper block than the 14

--' " day samples, but the difference was small.

_ (3) The 1-day Rheovlbron (weighted) samples were in general

_ _ easily removed from the copper block, exhibiting to

_ various degrees electrostatic clinging and some stronger

::_-_ bonding (but removable) involving only charred or black

i..... areas of the films.

_ (4) With the exception of samples No. 6 and No. 7, the 14-

!:-,,,_:i day Rheovibron samples were removable, but overall there
e

__--i was a greater tendency toward more adherence, consisting

k:. of electrostatic clinging and charred bonding. Samples

_ No. 6 and No. 7 were strongly bonded to the copper

_ : block. Sample No. 3 readily fell off the block, and

_ samples No. I and No. 8 exhibited very slight electro-

....,,:_=_,_. static clinging.

(5) With specific attention to only the areas of the ESCA

__,_,,: and Rheovibron samples which were exposed to radiation,

i_ _ clinging which was of a type judged to be greater than

'=_m_ or different from electrostatic clinging, occurred o_nly_

_,,. when encountered with the charred or bl_ck portions of

_ the film.

_. r, :

/-

_. 4-136
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_i (6) Sample No. 6, the Ciba-Geigy polyimide, after 1 day of
[

_ " radiation exposure u_derwent a decrease in width from I

_i_!.: an initial 5.61 mm to 3.77 nun, and an increase in
!

_ thickness from an initial 7.41 x 10-3 mm to about

_i 20 x 10-3 nun.

_, ESCAAnalyses

Various questions and concerns were raised and expressed

about this test, a key question centered on whether or not copper acted

in any way, such as a catalyst, to either promote or accelerate the

radiation damage. Accordingly, ESCA analysis centered on two areas,

detection for copper in the irradiated films and the direction of radia-

tion damage through the films, either from the irradiated side through

to the copper side, or from the copper side outward toward the radiation

_iI,!/ source.

_i_il The results of the ESCA analysis of these materials were as

..... follows"

i (1) Copper in concentrations ranging from 3 to 5 atomic

_m/__ percent was found on all surfaces of the materials,

_:. but not in the bulk of the materials.

(2) The radiation exposure caused the materials to carbo-

nize, as determined by the decreases in concentrations

of the non-carbon elements. Carbonization is more evi-

dent on the radiated surfaces, then on the back sur-

faces, but the gradient of carbonization, although dis-

cernable, is not great. It could not be determined

o from these tests whether the proton or UV radiation

_ caused the carbonization. However, in some tests con-

ducted at TRW, 1 proton irradiation was identified as

_'_' the cause of optical degradation to Kapton film.
i.

....• (3) Evidence from these tests indicate that radiation

d_ damage to the materials proceeded from the radiation

4-]37
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exposed side of the samples toward the back side which

is in contact with the copper block.

(4) It is speculated that proton bombardment caused sputter-

ing of the copper, which may be the mechants_ by which

copper deposited on the surfaces of the samples not in

contact with the coppar block. This same mechanism of

metal transfer has been observed by the ESCA people

when they are Argon etching. Argon striking metal

masks causes sputtering of the metal and deposition

onto surrounding surfaces. The mechanism by which

copper deposited on the back side of the films is not

explained.

Rheovibron Analysis

Only Rheovibron samples No. i, No. 6, and No. 8 after I day,

and samples No. i and No. 8 after 14 days had sufficient length and body

for mechanical testing on the Rheovibron. The modulus results on these

exposed samples, along with those for the controls, are tabulated in

Table 4-31. Because of degraded condition of the samples, all that can

really be said is that the modulus values decreased from exposure, again

strongly pointing out the need for reflective, protective coatings on

the polymer films.

Metallized Film Experiments

For the second set of tests conducted at the Boeing Radia-

tion Effects Laboratory, several changes were made. First, the test

samples were metalllzed films of the two major candidate polymers;

Kapton-H and Clba-Gelgy BIO0. Ten benchmark coated samples of these
o o

films (IO00A of aluminum on the front surface and 125A of chromium on

the back) were irradiated with 1.3-keV protons and UV, visible, and IR

radiation at a 16-sun rate. Test conditions differed from the first test

set in that the samples were suspended in the chamber in such a manner

that their irradiated zones were "free-standlng", i.e., not in contact

with any temperature control mechanism, nor any portion of the vacuum

chamber or other apparatus. The test was designed such that each sample
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o--__, Table 4-31. Modulus Values of Boeing Test Materials (Rheovfbron Analysis)
i

o L

' A. Before Exposure

;_ Boeing JPL Sample
_i' Sample Log Designation Modulus _
_,_ No. No. PSI x 10 -3

_o I 141 Ames 02 Etch 5.06
... : 2 66 LaRC Cast Polymide 5.02

i,:.' 3 118 Joint Not Measured

_". 4 82 KOH Etch with Post Cure 5.04

i "_'): 5 135 TRW Electrocast 4.33_oi,-_' 6 140 Ciba Geigy BI00X 2.69

7 85 Upjohn 2080 4.19
_ 8 106 KOH Etch W/O Post Cure 4.96

,_ B. After Exposure

,,:,,. Boeing Exposure

,: Sample Time, Modulus .
No. Days PSI x i0-_

_,i I 0 5.06

_:' 1 4.94!

13 2.06

ion,

_ 6 0 2.64
1 2.07

< .

o 8 O 4.96

i "- ,. i 4.64
i_', .: 13 2.34

"" was to acquire a steady-state temperature as determined bv (I) its

_!_ absorption and emission characteristics, (2) the proton and "UV" expo-

_ ....._: sure rate, and (3) the rate of receiving secondary radiation from nearby
• surfaces.

,, oo

0, The metallized samples are listed in Table 4-32. A total of

ten specimens with Rheovlbron test size dimensions were fabricated, some°L

,#" with built-in defects where the aluminum coating was intentionally

deleted in a thin horizontal segment or gap of varying width across the

, approximate mld-points of these specimens. Also included was a sample

_ _'_'" bonoed Joint of each material.

_ Figure 4-43 Is a closeup photograph of the I0 metal llzed

films prior to irradiation. ]dentlflcatJon of sample type for its posi-

tion in tilechamber is given In Figure 4-48. The photograph is taken

r
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I

...... Table 4-32. Aluminized Samples for Second Test Stage

,,

TYPEI TYPE11 TYPEIll

L_v ___J/
ALUMINIZEDKAPTON ALUMINIZED KAPTON BOND JOINT, A1

•=_ "o '; '" REFLECTORt CHROMIUM REFLECTOI_WITHGAP REFLECTOR& Cr
'° '_ _' EMITTERt NO BREAK IN A! & NONE IN Cr EMITTER
.....° ' IN AI METALLIZATION EMITTER

(_

,,. Boeing
Spec JPL Chamber Sample

- Description Type Designation Position Thickness

°,,,. Direct manufac- No gap I 340D 13 0.16 mil

tured Kapton l-mll Gap II 340A 17 0.16 mll
_: Polyimide with

......" Benchmark 2-mll Gap II 340B 15 0,16 mil

,. : Coatingl
r_ _''" 5-mil Gap II 340C 9 0.16 mil

...... _: Bond III 306D 14 0.16 mil
, _ o •

_._': Direct No Gap I 306D 14 0.12 mllmanufactured
l-mil Gap II 306A i0 0.12 mil

,._ (P.J. Sweitzer)
:. Ciba-Gelgy BIO0 2-mil Gap II 306B 12 0.12 mil

Polyimide with
5-railGap II 306C 182 0.12 rail,_° Benchmark

Coating I Bond III 16 O.12 mil

iBenchma r o"' .... _ coating consisted of 125A of Cr on the emitting side of film
o : and 1000A of A1 on the reflecting (sun) side.

" " 2This sample (No. 18) was cut for irr'adiatlo, testing in a direction 90 °
from the direction of cut of the other Ctha-_;_.igysamples. The others

......"o were cut with the long direction parallel to the machine direction. This

specimen was in the transverse direction. This sample was dimenslonally
much more stable than the other Ciba-Geigy samples (see Figure 4-43),

4-140
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Figure 4-43. Metalllzed Polylmide Film Samples Before 16-Sun
': UV/Proton Irradiation

...." from the side to be exposed to UV and protons. The gaps that were

_,,_._ intentionally put in the aluminum overcoating by selective masks during

,_ vapor deposition are visible in some samples. Views of the reverse side

_- of the sample apparatus as modified for this experiment (Figure 4-44)

o_: show the 1-gram mass below each sample and show horizontal grid markings

that allowed sample length changes to be measured in situ during exposure.
'b .

*t

_, Many of the details Involved in setting "UV" exposure inten-

'2,1 sity and attempting the temperature calibration for the chamber are left

=_ for the discussion in Appendix Ill.

!
' Test Results on Metallized Samples

7

c_

A principal objective of these tests was to expose the

temperature-sensitlve films to no more than 16 total suns. Durlug pre-

irradiation photography of tlle samples' Initlal conditions it was

[
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Figure 4-44. Weight Positions Below Suspended Metallized Polyimide
Films Prior to Exposure

._oi determined that the Ciba-Geigy polymers that were "longitudinally cut"

had already shrunk appreciable under illumination by the photo lighting

source. Irradiation by the solar simulator continued the length shrink-

." age in these samples and to a lesser extent in the Kapton films. Data

on sample length changes, as reduced from periodic photographs of sample

._, weight posStlons in situ before, during, and after the llO0-hour exposure

period, is presented for Kapton films in Figure 4-45 and for Ciba Geigy

". films in Figure 4-46. Since the current through the UV source lamp must

periodically be increased to compensate for lamp aging, and since optical

_ surfaces between the source lamp and the samples must periodic:qlly be

: cleaned, Figure 4-45 includes a charting of these adjustments to show

_: the degree of correlation between small intensity adjustments and sample

lengths, The main coincidence of sample length changes and solar simula-

tor intensity increasers is seen in Figure 4-45 to be after 22 hours of

exposure when, a_ described in Appendix Ill, the rationale for setting "UV"

• exp_surL, tnt:ensitv was modified. F.!gure 4-46 compares the stability of

•. 4-[42
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: sample length among Kapton samples as a group, individual Ciba-Geigy

_, - samples cut longitudinally, and Ciba-Geigy sample No. 18 cut transversly.

: The irradiated surfaces of all ten specimens were affected

by the proton/UV exposure. This was most noticeable in the Ciba Geigy

B100 specimens. After the first 20 hours of exposure approximately 80%
i

i of the Ciba Gelgy samples' irradiated lengths had shortened %5% narrowed,

as their transition temperature was exceeded• The transverse-cut Ciba

i_ Geigy sample (No. 18) appeared to be an exception to this statement

about shortening, although it did neck down soon after the exposure

_!i intensity was increased to 16 suns. The shape of the solar simulator

beam is indicated in Figure 4-48 and the uniformity of the proton beam
t2,

'_ is shown in Figure 4-49. Toward the end of the experiment, extensive

_! curling, warping, and twisting has affected both the Kapton and the Ciba

_ _ Geigy materials, as shown in Figure 4-47.

i "j

: _/ Shrinkage of a sample in both the width and length dimension

_ implies an increase in material thickness (which was not measured) and/or

loss of volatile molecules through outgassing in the vacuum test chamber.

Vacuum gauge indications confirm the latter.

Insufficient thermal conditioning of the Ciba-Giegy test

samples before delivery to Boeing for irradiation may have been a factor

.... in their greater instability. The Ciba Geigy test samples were "soaked"

at 250°C in vacuum for 5 minutes. It is believed that a longer condi-

tioning period might have improved the dimensional stability of the Ciba

Geigy material tested.

After completion of 45 days of exposure, all i0 samples were

extensively deteriorated, friable, and best described as resemblylng

pyro!yzed cigarette paper. With the exception of specimen No. ii

(Table 4-32), a bonded joint Kapton sample, all of the initially flat

_, samples were tightly curled The condition of the samples suggested

deterioration resulted from high temperatures, not radiation.

Considering the degraded condition of the specimens, analysis
17

by ESCA and Rheovibron was ruled out, along with planned slumlnum peel

'_ 4-145



.v- Figure 4-.47. Metallized Films After i000 Hours Exposure

_ strength measurements at Rockwell. There was however one specimen,

Kapton sample No. 17 (Table 4-32) which was completely intact, although

tightly curled. By patient and careful handling, this specimen was suc-

cessfully mounted intact in an l_stron test machine and found to have a

• breaking load of near 1.5 grams. This film sample was intentionally fab-
i

. ricated to have a i mil gap of missing aluminum, the gap running width-

wise across the sample and therefore normal to the applied load. So pre- I
I

sumably the deteriorated Kapton carried the mechanical load, and based

on its initial cross sectional area, this breaking load calculates to a

stress of )50 psi. The tensile strength of control Kapton is nearly

20,000 psi.

As Inferred earlier, it was evident from the condition of

the specimens theft tile desired temperature level (260°C) for the test

had been e.,ceeded, thus causing thermal effects to contrlhute heavlly to

the dcgra0ation ob_er,,ed in some of the test: materials.
L, ,,
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=_ Figure 4-48. Uniformity of Solar Simulator Beam Actuai Size

of 16-Sun UV Beam
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_* The major contributor to tile excess temperatures In tills

._t_i test was again the spec_.men configuration. Tile curling and twisting of

,...... ':i the narrow film strips altered their radiative exchange prop,:rties and

; .... _ resultant equilibrium temparatures. Some film samples rotated enough

_ that the more absorbing emissive side was facing the radiatlo_ rather
L_' ;' r : ' than the intended reflective surface. Sample changes such as these

_ depend on incident radiation levels and otJ interactions with the test
_,_ chamber as well. Test chamber limitations point out that laboratory

:. a true black body, In this program, highly reflective nickel platinghad been used to cover the copper sample block for the second test,

,_!'.--!, In connection with future Solar SaiLing material studies ;ttld

'<_ii' development, samples more closely simulatt':i.- planar sheets shotlld be

irradiated. Long, narrow samples are particularly suscel_tiblt, to warp-ing and twisting. Tensile-loaded samples having widths approach i .r

_'f their exposed lehgths should he e:._post'd to radiation i_t,rtint, nt to tile

; application environment.q, l':ven framinp of test matt, rials for overall

circumferential dimensional control should be ct,tlsitlered.

_: From tile test chamber standpoillt, further contrail t_vcr thc

reflective and radi:ltivt., prtq_orties of surfaces sttrrtml|din_; ttst spt,t.i-

o moils should be exercised during future experiments t,f tilt, type j_t, rfol'l:tt,d

" ! _ for this program. Boeing h;ts dt, vt, lOl_t,tl imprt,vcd test te,'hniqut, s and
,, ¢onfiguratiorLs, including list, el widt.,r Sal',ll_lo.'4 and chanlber sltrt,lvc.._ with

= controlled reflectmace (Reference 2).

4.4.3.4 (lamnl_i and Neutrt,u Radlatioll. IIrookh,tw,tt l,,d_or,ttorit, s ill
! J(_,_ .. _ ................

_' Upton l.ong Island, N.Y olft, rt,d to irr;idi;ltc Solar S,lil m,ltt,ri,lls ill

,;:'- . their Illicit, dr pile, whlt, h Is i! qOtll't,t, ,_t }_illlllllll ,llltl iit,llll'tHl.,_. Tht, tJoNt,
6 _

:,;_r _ r,:ite ts 10 g !/_ltl_ t:very 12.8 lllintltt,s. Two clltrv ports itttt, tilt' l't,ilt'tt_F

Ct_l'O Wt.'t'O rllatlc available to .IPI., which ;trt, th,.'_iFned :Is Viq an,I VIIi. VI'_

,_ W_lS to lit., tlSt, tl to irr;ldlat_, Sail l||,ltt'rf,ll:, ;It It'vt'ls of 1(I8, I11_t, ,llld

_i"., . 4-148
U



720-9

.... - I

:L.:r'_d

_:_,_- 1010 Rads, and V16 was to be used to irradiate only at a level of

_ i 2 x 1011 Rads. The port geometry of V15 permits irradiation of 14 mate-

_ separate quartz tuber3, under a 0.5 atm. of helium,

l
rials, each sealed in

i while V16 permits only two materials, again each sealed in a separate
quartz tube under a 0.5 atm. of helium. The 14 materials to be trratt-

_ ated in V15 at each of the three irradiation levels are listed in

: Table 4-33. Without prior experience, it was estimated that 0.5 atm. of

helium would yield a material temperature oI approxtnmtely 150°C. This

was experimeptally monitored by using bare blylar (sample No. 14) as a

temperature check, which has a melting point near 250°C.

There was corcern that chromium could become sufficiently

radioactive after exposure in V15 to prevent handling. This was not in

fact realized. The materials were somewhat radioactive after exposure,

but the level dropped well below 1 mr at 1 cm (the limit below which

materials legally may be handled in a routine manner) within 2 to 3

_i weeks.

Irradiation and Visual Examination. Experimentally, many of.....' - -- the 14 Solar Sail materials which uere to be irradiated at 108, 109, and

G-_ :' I0IO Rads in the VI5 core of the Brookhaven pile were overheated and

_. destroyed due to temperature control problems with the experiment.. Included were samples No. I through 7 to be exposed at 108 Rads, samples

_:i NO. 2, 4, 5, 6, and 7 to be exposed at 109 Rads, and all 14 samples to

_!; be exposed at 1010 Rads. Due to space limitations in the V15 ,'ore, only

t two ouplicates of seven samples at a time could be irradiated at any of

the discrete radiation levels. _l)_,o arbitrary sequence started out with

samples No. 1 to 7 at I0IO Rads, followed by samples No. 8 to 14 at I010

• Rads, samples No. 1 to 7 at 108 Rads, and samples No. I to 7 at 109 Rads.

At this point the thermal runaway condition was dete,'ted, and (.orrecttvt.

'Jill procedures implemented.

_ The next batch then consisted of samples No. 8 to 14 t:, be

_: exposed at 108 Rads, which were in the reactor for about 12-13 minutes.

.__ Upon removal from the pile, It was fottnd that rea,'tor water lind leaked :

, 4-149
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_i I Table 4-33. Samples for Brookhaven Tests

Sample No. Description JPL I,og #

14 Bare Mylar 463

,_ 13 Ciba-Ceigy P100 (bare) 299

12 Ames 02 etched Kapton (bare) 424
old (195)

11 JPL chem etched Kapton (bare) 423

10 CGS production 0.16 mtl BIO0 (bare) 422

9 Production Kapton 0.15 mil (bare) 421

8 Bonded 0.5 mil Kapton (Benchmark plated) 340
NR 150 Joints (3 ea. tube)

7 Kapton, Cr only 340

_ 6 Benchmark 0.3 mil Kapton 427

5 Benchmark Direct Manfg Kapton 0.12 mil 425

4 Ion plated, Benchmark coating, chem etched 429

_: Kapton

_: 3 0.I rail Kapton A1 only 234
v,- .

2 Benchmark plated CGS direct production 426
O.12 roll BIOO

1 Benchmark plated, 0.5 mll CGS BIOO 428

' : into and filled the aluminum capsule which contains the seven quartz

sample tubes. Thus the outside surfaces of tilequartz sample tubes for

_ :! this batch were presumed to be at the reactor water temp,.,ratureof near

• 60°C. However, inspection of tileHylar in sample tube Do. ]4 found It

_ to be only slightly tan in color (radiation coloring), _ut fused hard

and very brittle on touch. This evidence indicated that the 'Aylar |rod

been heated to a temperature in excess of its 250°C me]t,lng point.

Further, film sample No. I0, of C(;S B-tO0, initially wrapped

_, Ina loose cylindrical shape, was found to bL' tightly shrive|ud for s,mc

length along its cy[indrlcal axis, and then flared out to it,.;initial

'o .

L_ _ _ ' ':_" '........ _J: _ :_:_" -_"_-"_"" ....................
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:t,_!. shape (bell bottom appearance) where tilematerial was in contact wlthtile bottom of Its quartz tube, which was In turn in direct contact with

i[ ol tile aluminum capsule. This evidence indicated that tile temperature

" . gradient from tile tube along the length of the sample had a temperature

_d range from 60 ° to somewhere above 325°C, the glass transition tempera-

,_ilr,:' lure ('lg) of the material. Thus, even with temperature control tech-
,i

; niques and tile presence of leaked reactor water, tile best guess is that

_,, ganuna beating from tile reactor still caused these sample materials to be
..;"' at temperatures somewhere between 250 and 350°C. Nevertheless, all sam-

.... _ ples from No. 8 through 13 were generally in good sh;|pe and handleable.

_ The next batchwas samples No. 8 to 14 to be exposed at 1(19 Rads,

_,:''_-. which was Jr. the reactor for about '2 hours. No reactor water leakage

°° " occurred during this exposure. The Hylar tn tube 13 was charred, black,

c_ and totally disintegrated. The CGS B-IO0 in tube No. 10 had the identi-

+-"+ call bell bottom appearance as observed for the 108 Rad exposure level.
.r

e- Temperatures for tills batch are cotlmated to have been in excess of

.... 300°C, and with the exception of Hylar, all tile remaining samples are

:_" slightly discolored to various degrees, but appear to be In good nlvch-

.:- antcal slmpe and _ere returned t,_ ,11'1,.
o o

_(_, At Brookhaven, tile temperature control techniques implemented

t,: in Vl 5 cannot be ust2d in Vl 6, and thus thermal runaway in Vlb was expt, cted.

Brookhaven therefore Irradiated four samples (2 5 9, 10) to 3 x 10 I0

,, Rads in tile Y15 core. These materials were found to be brittle after

_--1 the exposure, but a judgmt, nt could not be made as to the relative con-
o

o, ._:: tribution of temperature or rad tat 1oi1 to tilt' materta 1 degradat ioil.
o .

ol_t

a_ Hechanlcal Testing. Mt,chanleal testing on the Rht,,_vibron

_'--==_ was done only with the bonded Kapttm ]ofnts which had been irradiated t,,o u . .

lO 8 alld 109 Rads. These materials art. designated as Brookh;iven sample

No. 8 (Table 4-3_). Three each of tilt, sample_ were Irradiated at each

level. The Rheovtl_rcn t_st results for tl.ree controls, and the thr_,t,
o

"' saniples from each radiation level illld tabulated in Table. 4.34.
u }
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'table 4-34. Rheovlbron Analysis of Brookhaven Irradiated

NR 150 Bonded 0.5 mil Kapton Joints I

_i: (Brookhaven Sample No. 8)

Dynamic Force Loss Tangent

73 0.010: Controls 70 O.01471 0.010

Average 71 O.011

: _ 69 0.014

108 Rads L 71 0.00967 0.009

Average 69 O.010

_ : f 69 0.010

--" 109 Rads t 70 0.010
_' 6__2 O.007

' Average 67 O.009

_q" On the Rheovibron, the "Dynamic Force" is inversely proportional J

'° to modulus, the calculation of which also requires knowledge of the sam-

pie dimensions. Since the bonded joint is fabricated in a double con-

..... figuration, tileselection of approprLate dimensions for a modulus calcu-

_: lation is not straightforward. Recogt._izingthis in advance, all nine

i_ samples were cut out of a common bonded fJ.lm, and all were sliced to the

same length and width dimensions. Hence, dynamic force can provide com-

paratlve information, and form tiledata of Table 4-34, there is a sug-

_ gestlon that _.hemodulus (strength) of the bonded joint samples increased

_: with radlarJon exposure, at least up to 109 Rads. Whether the slight

_: increase In modulus is related to the adhesive joint, or to the base i

-_: Kapton film is not resolvable here, but it is known that the modulus of

_ Kapton film will slightly increase with radiation exposure up to a dos-
I

.b_),

age of about 3 x lO9 Rads, there being no data at higher rates.

B

_ "Loss Tangent" is a property of materials undergoing dynamic test-
. ing which relates to the dissipation of mechanical energy. It was pre-

i vlouslyobservedCseeReferen,:o:3>,:ha,:thelosstangentwa.related,:o
I:
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the quality of an adhesive Joint, with tlle loss tangent IncreE,slng as

I the joint deteriorated, and that it decreased as bond strengt!l quality

_._: i of the joint improved. The hypothesis to explain this suggests that

friction develops between debonding areas, which increases mech0nical

A _ energy dissipatio:_ and therefore the value of the loss tangent° Examina-

!, : tion of the loss tangent data in Table 4-35 is suggestive of subtle

decreases in loss tangent, which would indicate at the very least no bondL

i , deterioration, and possible some bond strength improvement.

_ The Brookhaven reactor puts out a gamma heating rate of near

" 9 watts per gram of irradiated material. For p3a_tic films such as

: Kapton, this translates into a material heating ,'._teof near 8°C/second.

_ "_,us in one minute, temperatures of the samples c_uld be approaching
! _ 4_ '°C. Given that poor heat transfer conditions exist betveen the sealed

L-_ o. samples and the outside reactor cooling water (maintained at 60°C), ther-

i mal degradation of the test materials is a major concern Because of

_ _! this, experimental results on Brookhaven irradiated materials might not

provide a fair evaluation of the Solar Sail materials.

: 4.4.3.5 Proton Tests. The absorbed dose, calculated for the entire

i_ mission as a function of position in the film is shown in Figure 4-50.

_, : The range of reported threshold doses for mechanical damage to Kapton

o_ is also shown. Based on this data, no bulk degradation would be expected

_ through most of the thickness of the film. The high surface dose could

produce mechanical damage in the Kapton, and potential catastrophic

__ .... degradation of the aluminum adheslcn
o_

!_ In order to reduce the uncertainty in the threshold doset

! _ and to obtain an initial assessment of the expected properties of the

film at various depths, a series of proton tests was carried out by
.I

i:_ MSFC Samples of 0.I mll (chemically etched fror, 0.3 mll con_mercJal

.... film) Kapton with aluminum and chromJum coatings were irradiated with

_ , 440 keV protons to total absorbed doses of 108 109 , i0 I0 and 5 x i0 I0._ rads. No significant changes were detected up to I0 I0 rads.

iI .
?
:I

:L
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!-__i_ i ABSOLUTEDOSE-RADS(S1)

_-_tI 107 108 109 1010 1011 _ ALUMINUMSURFACE
I P I • 2 X 1011RADS(SI)

_ • 2 X 105 EOUIVSUNHRSUV

-:: INTERFACE

_;,,,/ [ • 3 X 1010RADS(SII

:_,._ OF _ • 2 X 103 EQUIVSUN

I_-'/-::-_'_'_'_ "BULK"KAPTON

.,': . • 8 X 107 RADS($11

':'_-I, _ • 6 X 109 RADS1$;,

....,_ CHROMIUM SURFACE

_,,,jilt_! • 1 X 10lORADSISl}

o _'_"'J"_ ,N "

.,,,_ Figure 4-50. Absorbed Radiation Dose as a Function
: .... of Position in Sail Film
dL_ '>

The sample irradiated to 5 x 109 showed no apparent effects
• !i

=°_2,,_ when removed to an N,_ purged bag at comFletton of the exposure. Withina.

= o approximately 20 minutes It had broken into two pieces and by the fol-

_=-_ lowlng morning into snL_.IIfragments.

From Fig. 4-50 it ts obvious that this result raised concc, rn

about the integrlLy of the surface of the Kapton and the Kapton/alumlnum

.... interface for the Benchmark design. The concern did not extend to the

, vlablllty of the Sall for the HCRM since significant additional attenua-
6' u :

: tlon of the radiation, down to acceptable levels (for HCRM) could be

_- achieved with increased aluminum thickness and substitution of ITO for

Cr on the back side.

O h•., _

0
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"" The observed degradatlon-at 5 x I0I0 rads raised several

questions which would have required resolution for a HCRM but which were

never addressed :

.... • Where, between I0I0 and 5 x I0I0 fads is the threshold?

• What is the nature of the (delayed) failure; is it

.: characteristic of what would happen during the mission

.... _ or the result of some secondary process?

i_'-':ii • Would the damage adversely affect the Kapton/Aluminum

'. adhesion?
• What levels of conservatism are in the curve in

_.i-.._i: Figure 4-50? (Comparable profiles by MSFC indicated

_i lower dose levels).

!o _ 4.4.3.6 Electrostatic Control/Dissipation. Metallic or conductive

'.. semiconductor coatings appear quite promising as a means for dissipating
i >-- electrostatic charge and enhancing the thermal emittance of the Solar

._ Sail. The main points are:

I

i. _:" (i) Thin metallic films (e.g., a few hundred angstroms of

v Cr, AI, etc.) are suitable to dissipate charge and

"_ improve thermal emittance.
_'_,

_ (2) ITO (In203SnO2) appears to be the most promising oxide

?_._T_, semiconductor since SnO2 requires a 300°C heat treat-

_-:: ] ment and may be unstable

_! '.

..: (3) Sb doped SnO 2 is quite superior to SnO2,

: '. (4) The composition and vacuum deposition conditions can

,_. / significantly affect the resistivity of ITO coatings,

° I_ ° (5) ITO coatings appeor stable to UV radiation (1300 FVSII)

: and blgh temperatures.

• (6) Vacuum deposition works well for both metals and

'_r semiconductors _)r,dxs suitable for scale up process.

(7) The use of thin metal or semiconductor films tt_ improve

_' . the thermal emtttance involves au approach which com-

o | blnes the benefits of using high resistivity (high

,::." _ 4-155
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'_': emissivity) materials in an interference filter type

configuration.

(8) The most promising backside coating from both electro-

static dissipation and thermal emlttance appears to be
• o

_IOOA Cr or _I000A ITO. A potential problem with this

'ii thickness of chrome Is an increase in resistivity with

creasing, it becomes oxidized and non-conducting [n air

at elevated temperatures, and may not provide enf_ugh

particulate radiation protection to the Kapton film.

° No problems with ITO related to space performance have been

r. -- identified. The only problem seems related to its conductivity as dic-

tated by the coating technique. Vacuum deposited ITO conducts, but

° occasionally coatings of the ion-plated ITO were insulating. This is

_o most likely a function of coating technique where the oxygen content

entering the chamber strongly influences the morphology of the coating.

The major drawbacks of ITO for the Sail was the deposition thickness
d" O

i required (1000A) posed processing problems (multiple passes to achieve

i desired thickness) and the experimental status of the coating technology.

_I 4.4.3.7 Computer Simulation of Absorbed Dose.

= Halley's Comet Rendezvous. A computer simulation of the absorbed
. i

nuclear radiatlon dose over the HCRMwas performed using a JPL derived
J

environmental particle distributions analysis. The purpose of this
O

: effort was to estimate the magnitudes of the space radiation effects on

¢. the Solar Sall film and surface coatings. The four primary degradation

environments were:

__. (i) Earth's Radiation Belts

(2) Solar Wind

...... (3) Solar Flares

:" (4) Cosmic Rays

' 'rheparticle interactions, fluence peak flux and dose distributions

through the film were computed using a shield computer program.

,t.
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" The general earth-solar wind relatlouship is shown in

.... Figure 4-51. The solar wind direction, is canted with respect to the

earth's proton and electron belts. The radiation effects analysis takes

into account the orientation existing from launch, January 1982 to

_, Halley's Comet rendezvous in March-April 1986. The fluences expected

• for a HCRM are shown in Table 4-35. The solar protons tend to occur

in conjunction with sunspot maximum which should peak around 1980 and.

-f:_..... diminish until 1986. (Figure 4-52.)

I" the computer simulation, the basic environmental distribu-

> tion shown in Figure 4-51 was used at the 95% level whenever an option is

°_: given. The results (Figures 4-53, 4-54, 4-55, and 4-56) show the flux,
o ¢i.'

'2- fluence, dose rate, and dose distributions through the benchmark coated

,. polymer film.
6cJ"

Passage Through the Earth's Radiation Belts. A calculation was performed

, to determine the amount of dose received by a single fast passage through

< the earth's Van Allen belts. The dose profile from protons and elec-

trons impinging on a single side, i.e., the aluminum is shown in Fig-

ure 4-57. The radiation dose is low compared to the levels obtained over
. ' '..

the total mission, most of which is received during the cranking orbit
% .

• at 0.25 AU.o

Surface Erosion Calculations. An investigation of the effect of hlgh

_i energy protons and electrons on tllealuminum and chromium metalliza-

_,_ tion of the benchmark configuration was also performed. Because of

their heavier mass, high speed protons were considered to be capable

of inflicting the greater damage. The results are as follows:

Percent of Atoms Removed
u

Aluminum (10 3 _) Chromium (125 _)

: O.25 i.46

, Worst case assumptions were used in this study but thp effects were

found to be negligible. Tile main elements formed by direct octiwltion

• were S127 and Mn52, both position emitters.
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......'_+....; Table 4.-35. Fluences for Hall_y's Comet/Solar Sall Mission

'_!'_'.._+, Integral Fluence, F (cm-2)
._ Probability that F is Not Exceeded+;,j

_ Particles Environment Energy, E 50% 75% 90% 95%

": , 0 1.9(17)

Solar Wind 900 I.9(17)

' 1 keY 1.5(17)

...... I0 keV 3.0(15)

_ +",' 100 keY 5.9(13)

_+_"" Inter- Intermediate 1 MeV 1.2(12) 1.2(12) 1.2(12) 1.2(i2)

_--_.i_:_-o,_. planetary Energy
-_.: Protons Protons 1.4 HeY 6.6(11) 6.6(11) 6.6(11) 9.6(11)

+_._ 2.8 MeV 2.0(11) 2.0(11) 4.4(11) 6.0(11)
• "ii

=' 8.5 tte9 9.4(10) 9.4(10) 2 i(II) 2.9(11)
_L_ :

i0 HeY 7.8(10) 8.7(10) 1.9(11) 2.6(11)

_°......: Solar Proton 30 MeV 1.0(I0) 3.1(10) 6.8(10) 9.2(10)

............: Events and 60 MeV 3.4(9) 9.9(9) 2.0(10) 2.8(10)

_/o"!:ii Cosmls Rays i00 MeV 1.0(9) 2.4(9) 4.8(9) 6 6(9)
o........

_'o : i000 MeV 2.1(8) 2.1(8) 2.1(8) 2 1(8)
I+

+,

0 1.8(18)

_ i0 eV 1.8(18)

°'_ , _ Solar Wind 20 eV 1.6(18)

...... : _ 30 eV 1.2(18)

!
'/m_ IOC eV 1.8(17)
J _ _ Inter- Intermediate

+'_:: I planetary Energy I keV 8.5(14)' Electrons Electrons I0 keV 4 0(12)

+..." (Solar and

_ Jovian) I00 keV 2.0(10)
-----.-,_ _ 1 MeV 9.3(7)

_'_ I0 HeV 2.2(7)

! Cosmic Rays i00 HcV 2.0(7)

1000 HeV 7.4(6)

,, i J: I
V
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P

'_°: Percent of Atoms Activate,'

,, Aluminum (103 _) Chromium (125_)

' -'..i; 6 x 10-6 l..lO -7

For the environment postulated, both effects are estimated to be

: negl igible.

[

Futur.<W_o/k.. The preliminary eval.ati_n of tileeffect of space radiation

,, on thlt| Solar Sail films were completed in this initial effort. The pri-

° mary environmental effects that have been treated are absorbed dose com-

._ puter simulation supplemented by limited radiation testing and

theoretical damage calculations.

rl. 0 ,'
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Although major concern areas were identified, future work

needs to be performed in evaluation of subtle radiation effects that

_.. .. remain. Examples are: ion effects on coatings, high energy particle

• reactions, surface contamination effects, free radical formation, dlf-

_,: fusion phenomena and synergistic effects. These and other areas are

potential investigation topics that should be pursued both theoretically

....._ and experimentally in order to verify practicality of the Solar Sail

_ _, : concept.

_ 4.4.3.7 Miscellaneous Analytical Methods. To obtain more
information about the surface chemistry and physics, and adhesion and

• interfacial mechanics of the Sall film and its bonds; a study was con-

_ ...... " ducted (under contract to JPL) by the Rockwell Science Center, Thousand

_.i; Oaks, Ca. The purpose of this study was to investigate and analyze Sail
L : ,, film materials by means of some special refined diagnostic and analytical

_ techniques developed by Rockwell.

Their technical approach was divided into two phases: analy-,["

..o: tical tools and high stress (accelerated) testing, The tools consisted

:' _ .: of :

L_-_i_ (I) gatingEllips°metry-ainterfacesteChnique for analyzing and investi-

.,. r (2) Water contact angle - provides information on the

i' surface conditions of polymers and metals.
_,.-_. (3) Surface potential differences - to investigate surface

_" __,. effects of metals

_ (4) Photoelectron emission - another method for character-

izing and investigating metal surfaces.

_-' The information obtained from the use of these techniques is

;_---,-! basically derived from comparative analysis and was to be used primarily

" in investigating Solar Sail materials before and after space effects

; testing to simulate tlm space and solar radiation at 16 suns intensity.

o_ For example, the test specimens from the previously discussed tests con-

" ducted at the Boeing Co. and at Brookhavcn Labs were to be further ana-

:. lyzed using these "tools". For reasons glvvI_ In the section discussing

4-165
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........ _ these latter tests, the resultant specimens were not suitable for further

analytical study. However, Rockwell was able to demonstrate that the

four analytical techniques were capable of yielding reproducible and

o_V: characteristic readings on control' samples of the film materlals.

In the area of high stress testing, Rockwell conducted
.....'_

_:_ experimental work to develop the following types of accelerated tests:
!.

(1) Coating Integrity - Exposure to polar solvents -

metallized (A1 and Cr) films heated in polar solvents

should eventually separate or delaminate from the poly-

mer subsLrate. The time-to-delaminate can be consid-

ered a measure of coating bond strength, for a fixed

_ solvent and temperature condition. Alternatively,

intermediate exposure times should result in reduced

'_'_ bond strength which could be used to calibrate the

tools.

i-_ (2) Temperature cycling - metallized film was thermally

cycled from room temperature to 250°C once every

..... 6 minutes.

i_=-_: (3) Thermal shock - metallized films were heated to 260°C

i_,i and allowed to stabilize at that temperature. They

_ were then quenched in liquid nitrogen. This step was

_ _'- repeated through several cycles.i
• (4) Vibration - strips of metallized film were placed in

_- slight tension by clamping the ends between two fixed

....o_' grips. The center of the film strip is then attached

_i_i to a vibrating piston operating at 40 Hz and an

,, amplitude of 0.25 inch.

These four tests were devised to simulate the mechanical and

'_, thermal =nvironments that the Sail film might experience both in the

o pre-launch and mission environments. They found that the surface charac-

,,: terization of the film changed with some of the degradation processes,

e.g., thermal cycling, vibration cycling. However, the changes observed

'_. were not relatable to physical degradation that might occur under

• 4-166
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• |
"_ ' anticipated Solar Sall service conditions. Visual observations of the

'_ metalllzed film material after exposure to drastic thermal and mechanl-

°i cal shock or cycling Indicated that it was very stable. However, the

analytical tools developed, indicated that in some cases the chromium

layer was detrimentally affected. This was also observed viaually at

tIme s.

$ At the tlme that work was suspended on the Sall program,

_,:.i. Rockwell had demonstrated the capability of their sophisticated analy-

tical tools to characterize the Sail fllm materials on control specl-

, mens. Unfortunately, they wore not able to verify their findings by
• ,', O

,-:o) characterizing samples that had been exposed to simulated space and

_ solar radiation, e.g., the Boeing and Brookhaven tests.
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,, 4.5 SUPPORTING STRUCTURES

At the time the Heltogyro design concept was adopted for

the Solar Sat1 vehicle, the structural materials for the previously

: pursued square sail were still under study and not sufficiently fina-

i;_ llzed to warrant inclusion in this report. The following discussion

of supporting structures is, therefore, limited to the Heliogyro ver-

:_.,_:iv":"_ slon. The information presented in this section is directed at the

_!_[_iI consideration of Solar Sail propulsion in the future, which wlll

_: definitely employ the Hellogyro concept In view of its high efficiency

_ and unique maneuverability.
=

For the convenience of the reader, the discussion includes

some essential design aspects, even though they may have been covered

- _ earlier in tills report.

_-- 4.5.1 Identification of Structural Components

o

From the viewpoint of overall design and material require-

_ ments, the Hellogyro structure_ may be divided Into three major

subassemblies: (i) the hub structures which provide the structural

• support, the deployment mechanism and the pitch control of the blades,

.. (2) the flap hinge brace assembly which may be considered as blade

_' root structure, and (3) the blades. These subassemblies and their

major components are identified in Figure 4-58 with the nomenclature

'*i_ used throughout this chapter.

,i An overview of the individual structural components is pre-

o i sented in Table 4-36, together with the quantity per vehicle, the

_ : largest dimension and the identification code of the section in which

they are discussed. For completeness, the table includes a few non-

structural components (in parentheses).

i./
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_. HUBSTRUCTURES FLAP HINGE BRACEASS'Y BLAD__..EE

_ /STAYS

DAMPER

oo

Figure 4-58. Major Hellogyro Structural Components

oi,',_ 4.5.2 Material Requirements and Generic Materials Selection

_:_-_- The most basic requirements of structural materials for

,:: overall systems efficiency are high strength and/or stiffness, low mass

_J_ (weight) and high dimensional stability throughout the temperature

.... range from near-sun orbit to aphelion. These requirements can be

_'- translated into the following material properties:

_ "g High Strength to Weight Ratio

_" J_ High Stiffness to Weight Rati_

Low Thermal Expansion Coe_flclent

In the early part of the study, alumlnum, titanium and polymer-be.se com-

ii_ Doslte_ were considered as candidate materials. A flrst-order analysis

_ was performed on th_ oasis of merit functions representative of the

• : 4-170
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Table 4-36. Major Heliogyro Components

Max. Dim.

: . Components Qty. (in) Section

= ,@_: HUB Structures

Center Body 1 9.55 4.5.4.1

_ (Spacecra ft) (I)

: __-., Boom 12 4.75 4 5.4.2
i Yoke 12 8.2 4.5.4.2

_ :_'::: ':, Damper 12 O.15 4.5.4.3
l t

i_ Reel 12 8.1 4.5.4.4

:_ (Pitch Motors) 12 O.4

: .... Flap Hinge Brace Assembly

" _'°" Struts and Tie Bars 48 3.5 4.5.4.5
o

_ Stays 24 172.0 4.5.4.5

: Biad__=ee 4.5.4 .6
k

...... _ Tendons 24 7,340.0 4.5.4.7

/ Battens i,068 8.0 4.5.4.8
o_

x) Cross-Tendons 11,520 8.1. 4.5.4.9

o _, x) (Film Panels) 5.760 15.0 (4.5.4.9)

_':_'::": (End Mass) 12 8.0
.::' K,!'

__ x) applicable only to one optional design (individual film panels
suspended with cross-tendons.)

,f ,, •

. above postulated requfrement:_. The comparison of the candidate materials

° with regard to the strength merit function Ftu/_ , the st!ffness merit

_"_:. function E/f, and tile thermal dimensional stability merit function l/_'_
: ,

o : indicated a distinct superiority of graphite/polymer compo,_ttes, as

......,. illustrated in Figure 4-59. However, the high temperatures encountered

:_ :: during flight phase II (solar cranking orbits) limited the choice of

• the composite matrix to polvimldes. Gr.l_hite/polvlmide composite._ wt,r_.,

,_.. therefore, selected as the preferred str, lctural material to hi, apl,lit'd

wherever feasible,
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4.5.3 Selection of Graphite/Polyimide Composites

The selection of specific polylmide types as composite

_ matrix material was based on three criteria: (1) maximum temperature

* _i capability, (2) curing requirements and reproducibility, and (3) adapta-

_! bility to joining. An evaluation of various commercially available
_===. polyimides led to the selection of the following types:

I'r_l_. Polyimide Max. Temp. Joining

......_ NR-150-B2 330°C (520°F) Thermoplastic
=

i...._ PMR-15:'_ _,_: 290°C (550°F) Adhesive Bonding
:,==_:,_, L_C-160

i

i_• DuPont NR-150-B2 emerged as the most attractive matrix

material since it combines hightest temperature resistance with ease of

,::, Joining due to its thermoplastic characteristics; however, the curin_

cycle is somewhat complex, and effective joining by thermoplastic

..... methods has not been adequately demonstrated in composite applications.

": PMR-15 (NASA-Lewis) and the alternate LARC-160 (NASA-Langley) offe_ the

° _:i: advantage of highly reproducible curing characteristics, yet exhibit
<

more limited high-temperature capabillt_es; since both are thermoset-
o

: tlng, Joining can only be accomplished by adhesive _onding. Ultimate

i matrix selection is governed by the temperature and Joining requirements
of specific components.

The choice of graphite fibers depends likewise of the

:' requirements of the specific component. Tension-crltlcal components

call for a high strength fiber, such as HTS, Celion 6000, Modmore II or

Thornel i000_ and stiffness-critical components for a high-modulus

.... fiber, such as HMS or GY-70. All candidate fibers exhibit an extremely

low (negative) thermal expansion coefficient, which can be adjusted to

zero in multiple-layer composites by an appropriate orientation

_ - pattern.

o The extreme time limitations of the Hellogyro pro?,ram (5

• months) did not permit an exl)erfmental evaluation of the selected

o..
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• materials. All property definitions were, therefore, derived from data

• provided by material producers, from NASA-sponsored expertm_,:tal eva-

luatlon programs and from theoretical studies. The tentatively adopted

....'_'_ design data for various graphlte/polyimlde composites and structural

component categories (as of the time of program termination) are
summarized in Table 4-37 (primary data source: Reference 3).o

4.5.4 Materials for Individual Structural Components

:_" This section defines the materials selected for individual

i_ components on the basis of structural loads, temperatures, operational

_':_i:i considerations and producibility. The temperature data are based on

the following optical propertlesof graphlte/polyimide composites:

Uncoated Absorptance 0.80

_i Emittance 0.80

Al-Coated Absorptance 0.15

Emlttance 0.05

; i Total Emittance (Near-flat, sun

i_ _ii facing side A£-coated) 0.85

o_

Note that the data for the Al-coated composite are somewhat highe than

'_ for the Al-coating of the film (0.12 and 0.03), accounting for surface

degradation during assembly and operation.

=:_::.,::.. 4.5.4.1 Center Bod_: The center body, which serves as central hub

_! for the blades, is a tubular truss structure, 9.55m in length and

_i 1.5 m in diameter (Figure 4-60). The length of the individual tubings

_ (truss elements) varies from 0.7 to 1.3 and the diameter from 2.5
m

_ to 10 cm.

_' Te__emperatures: Since the center body as a whole remains at a constant

• sun angle, the tubings can be selectively coated to minimize material

temperatures. However, due to the varying orientation of individual

:: truss members, the temperatures vary from app. 230 to 325°C (450-620°F).

Thls temperature range dictates the use of NR-150 as matrix material.
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HUB-END
SPLICE JT

MECHAN ICAL

SPLICEJT

\

Figure 4-60. Center Body

Loads: The center body is primarily stlffness-critlcal with high

compressive loads, calling for a hlgh-modulus fiber.

Base Material: Composite tape, 2.5-3.5 mll thick, with the following

compositlon:

Matrix: NR-150-B2

Fibers: GY_-70 or HMS

Tubing Construction: The tubings are manufactured from the base

material tapes by multlple lay-up In 0°, +45° and -45° orientation,

with a maximum permissible number of 0° layers to increase stiffness

and compressive strength. This may necessitate an "unbalanced" lay-up
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pattern, which is acceptable for tubings. Composite wall thickness

_ and number of layers are as follows:

_:[. Tubing Diam. Wall Thickn.

_ ! ram (In) mm (mil) No. of Layers

25 (I) 0.38 (15) 5

•, oI 50 (2) 0.56 (22) 7

._Ci ii 75 (3) 0.76 (30) 9

i i00 (4) 0.76 (30) 9
_! Assembly: Individual tubings are connected with titanium alloy brackets_

The necessary adhesive bonding requires pressure which can be easily

applied to the first bracket 5y the use of an expandable and retract-

able internal mandrel (Figure 4-61A). A problem arises for the second

bracket, as the closed system precludes the insertion of a mandrel. The

use of slightly tapered tubings (advantageous also in tubing fabrica-

tion) and brackets generates sufficient pressure as the tubing is

inserted in the bracket (Figure 4-61B). The bracket holes are drilled

_I to exact distance after bonding.

i

_-_....! 4.5.4.2 Booms and Yokes. The function of these two components is

___I the deployment and retention of the blade. They are essentially box-

_m_ beams with rectangular cross-section and one open (longitudinal) side

_ (see Figure 4-58). Outlsde dimensions are as follows:

Boom Yoke

_'_ I Length (m) 4.75 8.2_: Cross-section (m) 0.4 x 0.4 0.4 x 0.5

_i The orlglnal design as one sln81e unlt wlth flat/thln walls, produced
by composite lay-up techniques in one operation, appeared quite feasi-

_ ble. It was, however, later replaced by a tubular design in view of

....._""I the more predictable stiffness characteristics and the higher confidence

in produclblllty. The length of Indlvldual tubings ranges from 0.35

to 0.6 m wlth outside diameters of 25 to 38 mm (I to 1.5 in.).

I!
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PRESSURE

GRAPHITE/POLYIMIDE
TI-ALLOY

GENERATES
BONDING PRESSURE

.... o_i

_u.7,

, o,

o
Figure 4-61. Assembly of Truss Members (Adhesive Bonding

of Tubings i.o Brackets)

Temperatures: Booms and Yokes are subjected to the same cyclic pitch-

lag and, consequently, sun angle as the blade (for details on thermal

: cycling see section 4.5.4.6). Even with partial Al-coatlng, excessive

composite temperatures u_ to 400°C (750°F) would be encountered at the

transient minimum sun angle of I0°.during high-pltch periods. Further

•:_:' studi_s and computer analyses showed that these unacceptable tempera-
i......

J. tures can be reduced to less than 315°C (600°F) by covering the tubings

' with HRSI insulation, (as used in the space shuttle), which is a low-

I:, density felt-like material composed of fine quartz flbers. An insula-

: Lion thickness of 2 ram, representing a 20% weight penalty,_reduces the

. ' temperatures for 25-100 nun diam. tubings to 280-305°C (530-580°F),

_: respectively.

Materials: Since these temperatures as well as the loads are similar _.

to the center body, the tubings for booms and yokes can be produced

4-178



r;

720-9

• from the same base material and by the same techniques as specified

for the center body (section 4.5.4.1).

4.5.4.3 Damper_. The damper, located between the inboard end of the

boom and the pitch control mechanism, has a length of app. 0.15 m and

a diameter of app. 0.4 m. The use of silicone rubber together with a

s_mple heat shield appears to present no problem.

4.5.4.4 Reels. The reel, located inside the yoke, provides stowage

for the blade and the flap hinge brace assembly prior to deployment.

It has a length of 8.1 m and a diameter (at the spindle) of 0.3 m. It

is primarily stlffness-crltical and exposed to comparatively moderate

temperatures. It is preferably produced from HMS fiber and LARC 160

or PMR-15 polylmlde, except for the titanium tubing axle.

4.5.4.5 Flap Hinge Brace Assembly. This assembly provides the trans-

fer and re-dlstrlbutlon of torsional and bending loads between the

blade (first batten) and the yoke. Major structural components are:

four struts, two tle-bars and two "stays" in the form of wlde-mesh

systems with edge tendons extending from the tle-bars to the first

batten. The entire assembly is stowed on the reel (partly in the

reel spindle) and is self-erectlng upon full blade
deployment.

The length of the struts and tle-bars is 3.5 m and 8.0 m,I

_ respectively There are stringent limitations on tilesize and shape

of their cross-sectlon, as they have to flt into the reel spindle
i!

! for stowage. Since they are further exposed to high compression and

bending loads at appreciable temperatures, the use of NR-150-B2 and

GY-70 fiber is mandatory for composite fabrication.

For the 172 x 8 m wire mesh panels, both quartz filaments

and metal wire have been considered as alternate materials. The edge

members may be fabr'.cated from the same materlals. The extension of the

blade teudons to serve as edge members would be most straightforward,

yet may be precludcd by excessive differences in thermal expan:_ton.

4-! 70
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__:[ The wire mesh requires a certain redundancy _o compensate for potential

:i micrometeoroid damage.
i

_.". .! 4.5.4.6 Blades. The blade representsthe actual sail of the Hello-
,,I!

....: gyro. It is stiffened in longitudinal or spanwise direction by the

" centrifugal tension generated by the vehicle rotation and an end mass.

_, Figure 4-62 gives an overview of blade configuration and major date.

_ The totallength from the flap hinge brace assemblyto the end mass is

o :_"! 7,340 m at a constant width of 8 m. The centrifugal tension increases

_._ from 12 N at the end mass to 764 N at the root (reel). The half-load

...."' point, which is frequently used as reference value, is at 71% of the

• .' total length in the spanwise direction (r/R = 0.7!).

o. !".

.... Since the ultrathin sail film cannot be subjected to any

= structural loads, the tension is carried exclusively by two edge members,

_"' designated as "tendons".

:L: I /
_ ° ,.27 o.7, 382No _'.

/ /

°__" TAPE l
° " WIDTM

: ,, ,' (r.m) / / 7,_I0 m

l

c.

o / /

! _,.i:;ii .r/R _E NSIO

°_ /, 2.12 /

/ /

i _ / 166m

_::.. / /
-- _'0- 764N

c!

.... Figure 4-62, Heitogyro Blade -'tendon Data

4-180



720-9

o_-, _ The chordwlse tension, generated by the solar pressure on

• the film - regardless of the mode of film attachment - has to "be

• absorbed further by chordwlse compression members or "battens", spaced

at irregular intervals. There are a total of 89 battens in each blade,

with an average spacing of 80 m. For the purpose of material definition
_

and the mode of film attachment, the blade may be considered as con-

_=_:i sistlng of 89 individual panels, in which tendons and battens provide•

a reasonably stiff framework for the suspension of the sall film.

' "_}2.o,

_i Several designs for these blade panels have been evaluated in

_!i considerable detaiL. Three designs which had been defined to the level
-_: of preliminary manufacturing drawings are shown i. Figure 4-63. In the

_;::_i first, the film is bonded to the tendons, resulting in a catenary edge

_ curvature. Difficulties in maintaining film flatness led to the second
design concept, in which individual film panels of app. 15 m length are

:r attached to the tendons by means of clothellne-llke cross-tendons.

........ ?:

• WRINKLED FILM
TENAR

i_. r•

'_" BASELIIqEPANEL DESIGN
..... • STRAIGHT

TENSION SPRINGS / EDGE MEMBERS
/

• ,* o "
o

MOOULAR-BAY DESIGN

i Figure 4-63. Blade Design Evolutlon
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-" While this concept still requires catenary tendon curvature, it assures

_ reasonable film flatness. In the latest design, the film is essen-

• tially attached to the battens, which illuminates the necessity of

tendon curvature. It requires, however, a rather complex attachment
o,

'_ _! mechanism to the battens or, rather, the batten/tendon intersect

points.

' Blade Temperatures: The temperatures encountered in the blade can be

defined rather accurately due to the essentially two-dlmenslonal con-

_' figuration and the well predictable (programmed) change of position.

i ,_ This applies particularly to the tendons and the sail film.

o : During the cranking orbit, the blade is subjected to contln-

_: uous pitching around the basic (coning) sun angle of 35°. Each pitch

cycle has a duration of 465 seconds (2 revolutions). There are two

_ types of pitch maneuvers, and consequently, thermal cycling as

__ follows:

%

,7: (i) Continuous low pitch of +i0 ° (sun angle varying

between 25° and 45° maximum). Total low-pltch

'>'o " time is 9.720 hours, comprising 75,].80 thermal

,, cycles.

_ (2) 16 periods of hlgh-pltch between i0° and 50°.

...... Total hlgh-pltch time is 384 hours representing

o._i_! 2,970 thermal cycles.

The two types of thermal cycles are illustrated in Figure 4-64 for

the f_im_ together with the associated temperatures. The cycle char-

acterlstics of the tendons are identical, except that temperatures are

°_ 8-II°C lower (primarily due to the high emlttance of the graphlte-

, polylmlde composite).
u-o"

_ķ :
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d

_i 465.4 m¢omls li_

245°C

250-- I j f,_.__ _

/ I \I I / \ _

CO T'CH

- _c /_ I I -
3000 CYCLES I

19o- 1 I -192"C

l leo I
(TENDON TAPETEMPERATURES8- I 1°C LOWER)

O

*_,_ ' Figure 4-64. Blade Temperature Cycles (Near Sun)
I
,_ .

_i_i/. The temperature computations were based on the following
oh=- *,

_i optical properties of film and tendon tapes:
• _i'

.... Mtlterlal Property Fil__m Tapes

Ai-Coating as 0.12 O.15

0.03 0.05

I Cr-Coa'cir.g as 0.75 ....
c 0.60 ....

I G/Pi C,_mposlte _ .... 0.80

c .... O.80

Total Emlttance Eo O.u3 0.85

t .
,_-_ .

,?:..!
,r, ,

L

i_-



r 720-9

,_/i' The somewhat higher values for the Al-coating of the tapes
r_'+

account for surface degradation due to handling and rubbing on the

+lii": reel. The values of the AI- and Cr-coatlngs are based on accurate

_i'_ measurements carried out by TRW; the values for the graphite-polyimide
- ._,.+.
........ . composite of the tapes are engineering estimates. The temperature

_ maxima of 234°C for the film and 224°C for the tendons wlth excursions

y, to 245°C for only 96 hours total are well within the capabilities of

_'_:'+,_ the selected composite materials, representing a substantial safety

_ margin. Cumulative time vs. temperature is Illustrated in Figure 4-65.

I 2 :__ The temperature profile of the blade over the entire sail

_ cruise time of 1,599 days is shown in Figure 4-66. As indicated, sub-
}!,+:)ili zero temperatures are encountered during cruise phase IIl (aphelion)

_-'_+: for approximately 750 days (18,000 hours), dropping down grad:tally to

• a minimum of -128°C. These low temperatures can be substantially

_-:; relieved by blade reversal due to the high solar absorptance of the

_: then sun-faclng Cr-coatlng (film) and the uncoated side of the composite

tapes. A temperature increase in the low-temperature regime is desir-

e,: able with regard to shrinkage (localized effects as well as overall

i:*i blade dimensions) and with regard to potential enbritt!ement of the
++

polytmide.

+_"_ Temperature minima at aphelion for not-reversed and reversed
u,

ii_i: blades are as follows:

'+ Film (°C) T__apes(°C)

' Not Reversed - Median -128 -13t

i - Transient -133 -13t,

+_ Reversed - Median -44 -5;

=i . - Transient -52 -65

* AT by Blade Reversal 81-84 71-74
,i

r
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, (HOURS AT OR ABOVE TEMPERATUREDURING CRANKING PHASE1

-- .. I I ' II I I I I

" I 104 hrl TEMPERATURESAPPLY TO FILM,

I 10,0OOq TENDON TAPE TEMPERATURES -'

,,_ 6"111C LOWER

r "" 8,000 --

tl I --

^" /5
: ,.. ,000 hri

" IJ! -

I

I

:.:. j MEDIAN_ 2,00G TEMP I

l

0 I , I I
L' 2 _'M 192 203 221 234 245

_i.._' TEMPERATURE°C

• _ Figure 4-65. Cumulative Time at High Temperatures (Blade)

I I I I I I I I
! ,599 day

; PHASEI I CRANKING ORBIT ql PHASEIII I-
(234 days) [ (421 days) (943 days)

• : .i 300- ss,,o_......,.,_%% % I- 3

(CYCLING/%T : 53°C) I
....... J

;2,_. * i_ 245"C ...... TMAx #s HELIOCENTRIC _ I

.... I 200 221°C *'r _ Jl l/ DISTANCE (All) %% I192 .... TMIN I I
I

...... ... illk/....I..... : !!' I00 '_ I- I
_. < : i- "%.l v _i_k j BLADESRESERVEDAT I AU ._ j_l%l / I

'. AT AT Tmin - S4oC)

o i,-o

';'' I I I I I _ 1 I ,
° _ 0 200 400 600 800 1GO0 1200 1400 1600

.. SAIL CRUISE TIME, dayi

_' Figure 4-66. Blade Temperature Over Entire Mission Time
/."
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It is apparent that the blade temperature rises sharply

during reversal and drops equally sharp during return to its orlglnal

position. Temperature limitations of these excursions dictate a

finite range for the timing of the reversal maneuvers. In Figure 4-67

this range is defined in terms of heliocentric distance and days past

launch (shaded area). It represents various options between two limit-

ing conditions for reversal and turnback:

a. Temperature is allowed to rise to the temperature of

the cranking orbit (221°C). In this case the tempera-

ture has dropped to +42°C before reversal.

b. Temperature is allowed to drop to the minimum tempera-

ture encountered by the reversed blade at aphelion

(-44°C). In this case the temperature rises from -44°C

to +85°C during the maneuver.

I

EARLIESTREVERSAL DAY 775
LATESTTURN-BACK DAY 1560

+221

+200 UPPERTEMP LIMIT _

J LATESTREVERSAL DAY 802

EARLIESTTURN-BACK DAY 1495u / MEDIAN TEMPERATURES
REVERSAL FOR FILM ( 8 ._35° )

+10C RANGE

TENDON TAPE TEMPERA-

__ BLADESREVERSED TURES9-16°C LOWER
o--

o I
LOWER

j TEMP LIMIT-44
J BLADES

_NOT REVERSED-100
0 0.25 0.62 !.!8 2.0 2.9 AUHELIOCENTRICDISTANCE

775 800 900 !OOOlIOO

I I I I I DAYSPASTL.UNC.
1500 1400 13001200

Figure 4-67. Range for Blade Reversal
and Turn-Back
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To provide a safety margin against overshoot or undershoot,

the following two options are recommended (see Figure 4-67),

, Option A Option B

o Heliocentrlc Distance (AU) 0.70 1.08

,_ Temperature - Maneuver Start +20°C -33°C

_ - Maneuver Completed +195°C +lO0°C

i_)i" Days past Launch - Reversal 778 795

_._i_'! 4.5.4.7 Tendons. The primary criteria for materials selection and
configuration of the tendons, representing the most delicate Heliogyro

components next to the film, are

c (I) Load (tension) carrying capability at the cyclic tem-
o

_-_+ peratures defined in the foregoing paragraph.

- _, (2) Lowest thickness to minimize build-up on the reel

_-_ during stowage.

-_--. (3) Adequate resistance to meteroid impact.

It was clear from the outset, that a unidirectional graphite-polyimide

i,_ composite is the ideal tendon material in view of its high strength at

, ,:: the encountered temperatures and almost zero thermal expansion. Since

_--' [ I it further exhibits high creep resistance, the only dimensional change

_ is due to elastic strain in the order of 0.2%, resulting of a total

/ : I growth of the blade length upon full deployment by app. 15 m.
W

• | Base Metal Form: The prime criterion for base material form is the

!." necessity of minimized thickness to prevent excessive stacking height

.... during stowage on the reel (maximum permissible reel diameter is

, 0.6 m, which limits the stacking height to 0.15 m, including battens).

o Unidirectional graphlte/polyimlde tape of 1 ml] thickness was adopted

: I
" as target material, which was considered the ultimate feasible in view

of the 0.3 rail diameter of the indlvidua! graphite fiber. Since this

1 represented a substantia] advancement of the state of art (limited to
II

.|_,:,,_! 4-187
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o

r minimum thickness of 2•5 mil), a developmental program was initiated

jointly with Ferro Corporation which led to the successful production

0_' of l-mil graphite/polyimide tape in continuous lengths up to 800 m•*

,.. Tendon Design: The configuration of the tendons is solely determined

_... by resistance to micrometeoroid damage. From the viewpoint of load

carrying capability, a single l-mil tape of a median width of 25 mm

, would be adequate• However, a single hit by a larger micrometerold

o at one point of the total 7,340 m tendon length during the 4.38 year

i mission would result in the loss of the blade. This dictates a redun-

:_ dant tendon design consisting of several narrower tapes arranged so that

_ ,_ the load is re-distributed in the case of the failure of one member.
r

!- 'i_i The evaluation of various tendon designs was based on an

o.;i:. integrated meteroid flu:.=for the total mission time as defined in Fig-

= o_:• m2° ure 4-68 in term_ of particles/ vs particle size Further assump-

_:o tlons were a directionality factor of i, an average particle density of

:_ _ 0.5 g/cm3 and a mean impact velocity of 32.6 kin/see.
.i

_ In a redundant (multl-tape) tendon, catastrophic failure

_ _I_''_'_i'.__ r: occurs by either of three modes:

...... (i) Failure of an excessive number of redundant elements

L_: (2) Simultaneous failure of more than one element at load

i transfer points (tape Joints).

, _,..... ._. (3) Catastrophic failure of the entire tendon by a single

_ large meteoroid hit.

=_ It was found that no tendon design with less than 4 elements

......." meets the requirement of appreciable resistance to catastrophic failure

_ii.. after failure of one edge element. The slope at tape intersect poiuts,

further, should be 0.059 or less to prevent combined axial and bending

_:!' *l-mil tape was also produced with epoxy and polysulfone matrix• An

: attractive spln-off of thls capability is the potential of producing
,_, . ultrathtn multi-ply composites, as demonstrated by the successful

..... manufacture of 7-ply panels with a wall thl_kness of only 9 mIl.
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10_ -

_"

2 '® -

0.
1.000! .001 0.01 O.I

_.,_ _, _' PARTICLEDIAMETER(¢m)

,,,_*. Figure 4-68. Meteorold Environment, Expected Number of
Impacts during Entire Mission as Related
to Particle Size

=_ stress in the doubled area from exceeding the axial stress In the
,,,, unspliced region. Thls is also the highest slope that produces no

_,_,, compression.

i! These criteria led to the finally adopted tendon design• illustrated in F.igure 4-69. It is composed of two straight edge tapes

,, r 2 °_' and several diagonal tapes at an angle of app. and intersecting in

_/. 2.5 m intervals. The 0 27 m wlde crossIsection consists of 5 and, inL _-- _

_ some regions, 6 tapes (average 5.6 tapes). The width of the Individual

a l-railthick tapes varies from 2.1 cm at the root to 0.6 cm at the tlp

= " : of the blade, with a median width of 1.27 cm and a median weight of

_i 2.89 g/re.

....... The failure sensitivity of individual tendon elements as/

related to meterold slze is [llu_tr;_todJn Figure 4-70. Tt cnn be seen
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(NOT TO PROPORTION)

0.4 m

O,8m

TAPEWIDTH

DIAG NOM 1.27 ©m
TAPE MIN 0.6 c:m
LENGTH MAX 2. I c:m
"8.5 m

Ttk_l_THICKNEISS

I mIl (CONST)

'_ TAPEheATERIAL
UNIDIR. GP_PHITE-
POLYIMIDE COMPOSITE

43.35kg/6LADE

Figure 4-69. Tendon Design - Tape Data

that failure of an appreciable fraction of elements occurs only in the

size range between 0.I and i mm. Below this range the particles are too

small to cause damage, while above i mm the probability of hig becomes

negligible. Assuming very conservatively the complete meteroid size

spectrum up to the cm-regime, the fraction of elements failing during

the entire mission is 0.29_. The total expected failure rate per meter

4-1.90
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i I i 1 I i I ! I

.0029

o

°;i ° "t -
_-, 1
I .... "ii _ - TENDON FAILURERATE/m! '5

i" _ DUE TO MULTIPLE ELEMENT

_-_-._a_,.__ _ DUE TO CATASTROPHIC
pL _ _ _ FAILURE OF TENDON .4/10 7

_'_L".°'i =g - 2.1/1#
r:::.:?t u
I 'I - S','STEMPROA,L,TY

OF SUCCESS.967

• . !i

,_ ._

- . I

: , I |

,.o
_, _r PARTICLEDIAMETER < [CM)

_;: Figure 4-70. Fraction of Elements Failed
o_ _: Due to Meteroid Impact

o.... !

_ i of tendon is in the order to 2.1 x i0-7. Rates by t'ailure mode are as

-o:_ follows :

_i Multiple Element Failure 1.7 x 10-7
..._-_-_.,..

-_'_,: Catastrophic Tendon Failure 0.4 x 10-7

i)i,.: On the basis of these data, the overall probability of tendon survival
_i_. has been computed (conservatively) to 0.967.

.........ii:
_-__i,._i_._.," According to Table 4-37, the tenor' ,n tapes exhibit a minimum

_° _ tensile strength of 120,000 psi. On the basis of this value, the safety

factor of the virgin tendons against rupture is app. 2.5, which decreases

:. gradually with the meterold-lnduced disablement of individual members
/

o of 1.2 at the end of L'he mission.
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: Sunlnar7 of Tendon Material:

Base Material: Composite of NR-150-B2 polyimide and high-

_o , strength graphite fibers, preferably Celion

6000 or Modmore II.

.=

° Composite Form: Unidirectional single tape with a uniform

" thickness of 25 _m (i mil) and a maximum

' width of 2.1 cm.

_•, Joining Method: Thermoplastic (fusion)

_ s .... 4.5.4.8 Battens. To counteract excessive catenary curvature of the
2.i:

tendons, i.e., to keep the blade edges reasonably straight, chordwise

_ compression members ("battens") are required at variable Intervals,

...._. ranging from 15 m near the tip to 120 m toward the flap hinge (root).

o Primary design criteria are (i) Stiffness against bendlng/buckling at

-o _: a maximum chordwlse compressive load of 12N, (2) Capability of compact-

:i! ing at low pressure to a flat configuration of minimum thickness for
.,_ "

.... roll-up on the stowage reel, and (3) low weight.
O

o i

.... _ In the final design, the 0.12 m diam. x 8.0 m iong eylindri-
0

cal batten was to be constructed from 0.5 x 0.5 mm graphlte/polyimlde

_, tapes, arranged in a 45 spiral lattice and chordwlse longerons (Fig-

i, ure 4-71). To accommodate both, the cylindrical and flattened conflg-

i_°'_•' uration, the batten is assembled from two lengthwise halves, connected

with 6-_m titanium hinges. Assembly and curing of one half-batten on

_..,' a §mailer (8 cm diam) mandrel provides sufficient spring action for

°_ positive self-erectlon upon deployment from the reel

_-_L. Heat-shielded by a strip of standard sail film, the batten

,: temperature does not exceed 250°C (480°F). Thls moderate temperature

_., permits a wide choice of polyimides as tape matrix. In view of the

•_ high stiffness requirements, the use of a high modulus fiber, such as

ltNS or GY-70 Is mandatory. Compressive strength and modulus are

_ i included in Table 4-37.

e
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DIAM DEPLOYED 12 ¢m

"_ GRAPHITF.,/FOLYIMIDE LONGERONS

I.

Figure 4-71. Batten Construction
(Circular Section)

4.5.4.9 Cross-Tendons. In one of the alternate blade designs, the

sall area is composed of individual 15-m long film pane1_which are

attached to the tendons by means of two cross-tendons, as illustrated

in Figure 4-72. Since the temperatures, loads and Joining require-

ments of the 3 mm wide cross-tendons are essentially identical to those

of the tendons, the same l-mll tape material can be applied. With

regard to meterold damage, the use of two tapes provides adequate redun-

dancy for hlgh survlval probability of at least one tape, sufficient

for the moderate load. The cross-tendons are Joined with the main

tendons by thermoplastic bonding, while the film is attached by adhe-

sive bonding.
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i ' I'_ _1_°.', , , , ._1_-.._
I I I I , J,_1_111-.-_ _'_ TENDON

', ', ill[]l
I I i i11111
II I iIlll' __L_LJln,;.o

I

I

• I

'1 i,,::_._z,, IllI (DIMENSION IN m)

CONSTANT TENSION LEAF SPRINGS

_;: o,,.

_ Figure 4-72. Film Panel Suspension with

i:. Cross-Tendons

_ 4.5,5 Blade Assembly. A short paragraph is devoted to the assembly

. of the blade, since it is possibly _he most demanding and complex man-

ufacturing task. ever to be undertaken. In view of the delicate nature

of the components and the sensitivity of the materials to degradation .,

..i. by mere handllag, the entire 7,5 km long blade has to be fabricated it-,* ",t •

, one single continuous operation, from base material forms to the

.... 4-194
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! finished product, rolled up on the f_light reel and ready for deployment

i :" in space This calls not only for very exacting individual manufactur-.J

:, ing operations, but on-the-spot quality assurance, since the commonly

_ practiced inspection and qualification of the end product is not possl-

ble. A simplified flow chart of the blade assembly, identifying only

i_: { major operations, is presented in Figure 4-73. More deta£1ed Jnforma-
;:......', tion can be obtained from Reference 2, which also includes conceptual

_!. :i tooling design.

°: 4.5.6 Base Material Specification and Quantities. In the follow-ing, the most significant base materials for major structural components

:? are summarized with regard to material type, material form and quanti-

:-:_ffi ties required for the Halley mission. Quantities Include the flight_- o:

[ : r,

i= _.':
_r _P BATTEN BATTEN FLAP HINGE

,.. TAPES ASSEMBLY BRACE
_,_ " POSITIONING ASSEMBLY

_"_ DRILLING I
"i_ , TAPES ASSEMBLY

._: FL

COATED SAIL EDGE
'; FILM ATTACHMENTS

; = _:i.: ASSEMBLY

'" ADHESIVES, TAPES, SPRINGS

i

i ,J

_--_ -: Figure 4-73. Blade Assembly Flow Chart

d

o •

t.

,.- :.

!
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vehicle, ground test articles as well as manufacturing waste and

represent the total demands for material producers.

• (I) Tubings

,, Material: Prepreg tape of NR-150-B2 polyimide and HMS

or GY-70 graphite fibers. Tape thickness

: 63-88 _m (2.5-3.5 mil).

_"_"_"_. Composite Construction: Multiple Lay-up in 0° and

_'r_°I_ 45° orientation.

Tubing Dimensions: 2.5-10 cm (1-4 in) diameter,

0.38-0.76mm (15-30 mil) thick, in lengths of

...... 0.8 to 1.5 m. (2.6-5 ft)

•. : Quantity: 4,750 m (15,580 ft)

° Weight: app. 255 kg (560 ibs)

_ _._%1"

': (2) Tendon Tapes

Material: Prepreg tape of NR-150-B2 polyimide and

'_ hlgh-strength graphite fibers (Cellon 6000 ori .

_ Modmore II).

.: Form: Unidirectional tape of 25 _m (I mil) thickness
i

and 0.6 to 2.1 cm (0.32-0.83 in) width.

Quantity: app. 1.5 million m (%5 million ft).

Weight: app. 780 kg (1,700 lbs)

•. (3) Batten Tapes

_'_._ Material: Prepreg tape of PMR-15 or LARC-160 polyimide

• and HMS or GY-70 graphite fibers.

_-_ Form: Unidirectional tape of 0.5 x 0.5 mm (20 x 20

o mil) cross-section.

.... Quantity: app. 225,000 m (738,000 ft)
i!

'_ Weight: app. 83 kg (181 ibs)

4-196
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i-.o i. Heliogyro Preliminary Design, Final Report, MacNeal-Schwendler

Corporation Report No. MS-404, 24 August 1977. Vol. I - MacNeal-

_° °_ Schwendler Reports.

_ ,_ 2. Ibid. Vol II - Astro Research Corporation Reports.o o

....._-..--_, 3. Development of Design Data for Graphite-Reinforced Epoxy and

Polyimide Composites, General Dynamics-Convair Report

.... No. GDC-DBG-70-O05, May 1974.

' e i

o

,% ,
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_I CONCLUSIONS AND RECOMMENDATIONS

The feasibility of space-stable, very large area, highly

reflectln8 film systems at 3.3 gm/m 2 (>300 m2/Kg) has been demonstrated.

A reasonable probvbillty of comparable films approaching 1.6 gm/m 2

(>600 m2/Kg) has been indicated.

NASA has decided, for reasons other than high performance

Sail material feasibility, not to attempt a Halley Comet Rendezvous

Mission (HCRM) and to concentrate on development of ion propulsion for

other "low thrust" missions. Reversal of the decision on the former

,_:i (HCRM) is not only unlikely, it is rapidly becoming (if not actually
i!i
_ already) impossible because of the lack of the time necessary for further

_' development and manufacturing scale-up to meet the required launch date.

li Since ion propulsion is judged to: i) be closer to demonstrated tech-
nology readiness and 2) have greater growth potential (i.e. to nuclear

i electric propulsion), there are no plans for Solar Sail development in

!_ the foreseeable future.

if
The ultra-light weight, reflective film technology developed

for the Solar Sail and the future projection of this technology may have

_ a significant impact on other future space missions. Specific identi-

_ fled potential applications are: i) reflecting solar concentrator sur-

faces for the heat engine version of sattelite power station (SPS);

2) reflectors for the concentrated photovoltaic version of SPS and
il

3) Solares, space reflectors for terrestrial solar power stations.

i Potential other applications include antenna membranes and light-welght,

high temperature, radiation resistant, multi-layer insulation.
T

Some discrete points in current and projected thin-film tech-

nology are shown in Table 5-1, with an estimate of calendar time and

dollars to reach technology readiness for missions requiring _106m2.

Requirements for a few 10's or lO0's of m2 can probably be met in much

shorter time and with significantly less resources.

5-t
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" Table 5-1. Current and Projected Thin Film Technology

i Estimated Projection
Film System to Large Scale

_ ArealHass Technology Readiness*
i (Incl. Relf.

°! Coatings) Current Status Tlme Dev/Equlp $ Noues

M2i! ii gm/ Nov. 76 -- -- Current
_ (90 m2/Kg) technology

3.2 gm/M 2 Feasibility 2-3 Yrs $10M Baseline for

_ (>3C0 m2/Lcg) Demonstrated study com-

._= : pleted
July 1977

1.6 gm/M2" Probable 5 Yrs $I0-30M Reasonable

(>600 m2/Kg)---._ probability

1.0 gm/m 2 Lower Limit 5 Yrs $30M Practical

(i000 m2/Kg of Practical limit
Terrestrial

i _ Mfg.

(0.2-0.5 gm/m 2 Mfg. in Space i0 Yrs TBD Mfg. in
low-G and
vacuum of

space

*Note: A few lO's or 100's of square meters could be made in time
wlth resources.

The estimated limit of practical terrestrial manufacture

(I - 1.5 gm/m 2) is based on extrapolation of technology and handling

experience. Lighter weight films could be made but the handling con-

straints for terrestrial manufacture, assembly, launch stowage and sub-

sequent space deployment would make large scale applications impactlcal.

"_ Reinforced or unsupported films in the range of 0.2

ii 0.5 gm/m2 could be manufactured and used in the low -g and atmosphere

_! free environment of space,} •

>

D ,

!.
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, ,: The significance of reduced film area density on the

_.... feasibility of very large area space structures is illustrated in

Figure 5-1, which shows the number of shuttle flights required to launch

" '_08m2 reflector film and associated structure. The value of 108m 2 is

the approximate size of the collector for the heat engine version of SPS

and also the minimum practical area for a single SOLARES reflector array.

For this illustration, it was assumed that the structure mass is directly

': proportional to the film mass and equal to twice the film mass.

J_

2 _

: u '.

o_ I00

r

"_ ,_°_........- >. ° :.i_ _'_ 40 __di_._-_ FEASIBILITYDEMONSTRATED

•,:, 20 _ PREDICTED

: -_"_".i _ i 0 2 4 6 8 I0 12

! W ou..,_<: t

J" I Figure 5-I. Shuttle Flights vs Area Density for Thin Films

li

i
i
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, _PENDIX I

'-_._' F_RICATION OF A SAIl, SHEET PANEL

o The panel is fabricated by bondiLlg four 1.0 foot wide x

i 7.5 feet long strips of coated 0.3 mll K_pton film into a sheet. Butt_ _ joints will be spliced with coated 0.3 mil Kapton doublers 0.5 centi-

L ;: meter wide x 7.5 feet long. The doublers will have N.,-150-B2G adhesive

'i"-'_! coated (sprayed) on the aluminum surface to a thickness of 0.i to

_i. 0.15 mil. Adhesive for making all bonded joints is o_ly applied to

_;_ the doublers.

v :

_ Brown Kraft paper is used as a carrier to enable us to move

..... the cure the assembly without causing the layup to separate or creep
_j ...

out of tolerance. Strips of brown Kraft approx. 5/8 in. wide x 7'7"

_'_" are placed over the doublers in the layup in order to assure that
,i]

.... adhesive flash cannot get onto the curing facility.

!. Solvent tacking is accomplished by spraying a very small
F- °_ :

amount of solvent (ethyl alcohol or ethanol) onto the joint at the spot

_" _:_ on which the doubler is to be tacked. Before the alcohol dries, theo

'_ doubler must be properly located and lightly pressed onto the alcohol

_ wetted spot. Hold a light pressure for a few seconds and then release

it.

Soldering iron racking is accomplished by pressing a heated

e: | soldering iron onto a piece of brown Kraft paper placed over the spot

I
to be tacked. Hold heat and pressure on the spot until the paper

:i starts to darken or discolor under the iron. (15-20 seconds.)

I

¸fir_̧/

' I I-1
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Step by Step Assembly Procedure

_, i) Procure a sheet of 1/4, 3/8, or 1/2 inch plywood 4 ft. x 8 ft.

2) Cover the smooth side of the plywood with brown Kraft Paper

'" stretched tight and wrinkle free. Tape the paper firmly to the

plywood around the peripheral edges. A longitudinal splice is

probably required in the paper. Make sure it is located between

_i _ the bond joints and between the paper and the plywood. Use i in.
i_,_,,,.'

[_:_!!i_i masking tape.

3) Cut a strip of coated Kapton 7 ft. 8 in. long.
i 4) Lay it flat, (do not stretch it too hard) on s smooth surface

i_ convenient for spray painting. (The back of the sheet of ply-

:i,I
' wood with a strip of paper on it might do.)

5) Spray NR-150-B2G on the aluminum coated side to a width of about

6 in. so that a strip 6 in. x 7 ft. 8 in. is coated 0.I to

:_ 0.15 railwith the adhesive.

....o 6) Air dry the adhesive for two hours or more.

...._ 7) Oven dry the adhesive for 5 to 15 minutes at 225°F.

...._ 8) Cut (carefully) the strip of adhesive coated Kapton into

i:/ doublers 0.3 in. wide x 7 ft. 8 in. long (a total of Ii doublers

_:_ are required for the panel, seven for the butt joints and one

_ "" for each peripheral edge.)

...... 9) Cut four strips of coated Kapton i ft. x 7 ft. 8 in.

o I0) Carefully trim the edges straight and to a width of 11.5 inches.

_i_ ii) Carefully lay the first stip of coated film on the stretched

taped paper. Locate it (with the chromium side up) 1 Ln. in

from the edge of the plywood sheet and 2 in. from one end. Pull

it tight (do not stretch) and tape each end in 3 places.

o
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12) Carefully lay the next strip so that the longitudinal edges butt

but do not overlap - and tape in place. (You will probably be

able to get the two strips to butt at the ends only.)

13) Tack one end of (adhesive tack) a doubler to the abutted strips

at one end. Be careful to located the doubler so that one half

its width is on each strip. (We placed a straight edge on one

strip one half a doubler width from the joint and used the edge

to locate..._he....doubler.)

14) Progressively each 4 in. (approx) bring the strip edges into

contact (do not overlap) and adhesively tack the doubler to them.

15) When the Joint is completely adhesively tacked, soldering iron

tack the Joint in at least 8 places.

16) Lay the next strip (step 12) and repeat operations 13 thru 15.

17).. Repeat operation 16

_=+i You should now have four 11.5 in.-x 7 ft 8 in. strips taped

_ _,! to the plywood (or the paper on the plywood) and the three joints

,_+_ tacked securely.

.... + 18) Slide a sheet of paper between the film assembly and the paper it

__: is taped to, The purpose of this added paper is to prevent slit-

? ' , I ting the bottom (carrier) paper as the strips are slitted for the

" four additional seams (joints). The paper should extend from end

l to end in order to protect the carrier paper fully.
w

d
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APPENDIX II
°,i

REVIEW OF HIGH PROBABILITY FAILURE MODES AND ASSIGNMENT
_" " FOR SPECIALIST CONFIRMATION

'_......" Specialist Organization Identification

,)

_ i. Materials

2. Structuo:es and Dynamics

_ ,,,,_-_'_i;_ 3. Attitude Control _ _
o

..... 4. Design and Hardware
e-_ _:

- : _ 5. Spacecraft
,o

_? ,_ :- 6. Mission Design

_; °:_.: 7 Temperature Control

_ <c,....... .:

-2'; " '. 8. Power

o

7

am 7.
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i Solar Sail Sheet Material Failure Interactions

;- Review of High Probability Failure Modes
and Assignment for Specialist Confirmation

': Review Coordination

Test Group Affected*

_ Data Investigative
: Failure Interaction Required Organizations

_!: THERMAL ENVIRONMENT

.,,i_:. Interaction of the sail with the thermal
...... environment is the most significant con-

sideration for this mission since sail

strength and susceptibility to applied
load failure modes is a function of

"i! temperature.

I. Environments

A. Sail Loading

_o,,. It is particularly important that

!__ these failure interactions be
considered against the sail char-

acteristics with the appropriate

_i accumulated environmental history.

I. Reduced strength at high i 1,2,3,4,6,7
temperatures can result in

sail tearing or deformation
....! under load. Creep at high

stress locations reduces load

i capability, affects propulsive,_. efficiency and attitude con-
:= :' trol.

_ 2. Brittleness at low tempera- 1 1,2,4
tures can result in coating

i= or sheet cracking during sail

;_ reorlentatlon or reefing.

3. Worst case dynamic loading 1 1,2,3,4,6

after deployment is probably

180° rotation per day in Lhe

high temperature cranking
_, orbit. Stress loads can

tear or deform sail.

\ *from II-I
J
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_.
,_+_ Review of High Probability Failure Modes and

_, . Assignment for Specialist Confirmation (Cont.)

: Review Coordination

_ Test Group Affected*

Data Investigative

Failure Interaction Required Organizations

4. The 180° rotation per day in i i,2,3,4,6

cranking orbit is the major

repeated loading sequence for
the sail. Fatigue failure

is a possibility.

5. Reefing is a potential cause 1 1,2,3,4

of fatigue failure. Addi-
tional considerations are

local stress concentrations,
folding, and wrinkling.

B. Trajectory

Tile flight path affects gross and 1,3 1,3,6

cyclic heatlng/coollng of the

sail. Sun approach distance is

_! I limited by the high temperature
_ strength of the film material.

Potential degradation of opti-

'li cal properties by the time of the ..

'_!i cranking maneuver may restrict '_" $'.-.-'-_ _.,_.._I./'I_
the minimum AU and reduce perform-1

an o. ,oo
, _%1 in front of a planet may cause

._ sail overheating from loss of
......:_ cooling emission. Occult at ion.,_

from passing behind a planet may
, damage sail coatings from dif-

ferential expansion/contractlon
., I

.....:", of coating and film or may reduce
i. gross sail. temperature limiting

.... sail orientation or reefing for
6_mllL;

: _,_; a time after emergence.

_" If. Characteristics

i_ Sall response to the thermal environ-

ment at a given mission milepost

depends upon changes in sail charac-
teristlcs as the result of acr,tmulated

solar radiation, space vacuum and tem-

perature history prior to that point.

_ *from II-1
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Review of High Probability Failure Modes andI

Assignment for Specialist Confirmation (Cont.)
t

Review Coordination

Test Group Affected* |
Data Investigative I

Failure Interaction Required Organizations
i

A. Materials Specifications and 1,2,3 1,2,3,4,6,7. !
Process Specifications

|

The sall must retain strength and I

Integrity at temperatures from |
-lO0_C to 315°C. Materials must

_ be homogeneous, without contami- |_. nants, solid inclusions or voids
: that will weaken, upset thermal
_ balance, or distort the sail in

the space thermal environment.
:: Process specifications must pre- W

vent residual stresses, gas or

air inclusions in adhesives, and t
uneven material thicknesses that |
will weaken, upset thermal bal-

ance, or cause unplanned sail
L"I distortion in the space thermal Z

:: environment.
W

B. Aging 1,3 1,2 I
W

Hardening or embrittlement of
the sail after accumulated UV •

"' and vacuum exposure may increase !
_: its susceptibility to fatigue
! failure from repeated loading.

ii Of particular concern are areas
,i where coatings have cracked

allowing direct film exposure
to solar radiation•

L"

C. Temperature i 1,2

° |i..: i. Expansion/contractlon (non-

isotroplc) of the sall adds

to the stresses of dynamic

i.i and steady state loading.
|

_' 2. Differential expansion/

contraction of the sail due |

to the non-isotroplc proper- _ J
_ ties of Kapton causes higher.!

_,. stresses in one plane. Warp-
_ ing may result affecting sall

*from II-i |
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i_._L, i! Review of High Probability Failure Modes and
_: :; Assignment for Specialist Confirmation (Cont.)

Review Coordinationi

o Test Group Affected*

Data Investigative

Failure Interaction Required Organizations

.... /i

,; thermal balance/control or

_ .i attitude control.!

'_i I 3. Differential expansion/ i i
i,_'_ii_ contraction of the sail compo-
° ','._ nents (coatings and film) may

o _:iIi crack the coatings exposing RIGINAL PAGE It
° _:i the film dlredtly to solar C F POOR QUAI,!T}

_. radiation.
*0 i

__,_,_i 4. Expansion/contractlon after i i
_ , ': deployment may open cracks

! • _ i along creases formed in pack-

_;:"i: ing and storage.

k' i

5. Outgassing of the Kapton film 1,3 1,2,6,7

i, at high temperatures may cause

oj, eruptions in the coatings --

o ,, reducing propulsive effi-

_' _ ciency, revising sail thermal

,_ balance and exposing film to
direct solar radiation.

0

6. Expansion of trapped air pock.- 1 i
ets in adhesives may degrade

"#i sail seam strength by localrupture of the bonds.
..o I

_Ji D. Strength See I.A. See I.A.

Sail strength varies with tem-

i] _ perature and the cumulative solar
radiation exposure. Reduced

• strength at high temperature and

I brittleness at low temperature
r '9_ are analyzed under item I.A.

above for failure modes underl load.

. |

" '_' : " I *from II-i
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j- Review of High Probability Failure Modes and

i Assignment for Specialist Confirmation (Cont.)

Review Coordination J

_- Test Group Affected* [
_........_ Data Investigative I

Failure Interaction Required Organizations

_ E. Isotroplc Properties See I.A., See I.A.,_m_m_ II.C.2. II.C.2.
= ?

_ Variation of characteristics with
_- axis causes unequal load distrib-

_,_=_i ! utlon and possible sail distor- |
....,__._. tlon and warping. Analysis is
_=". under I.A. and II.C.2 above.

_!!_
r ,_., F. Electrical
r_

:t:_i The sail electrical properties of
surface resistance, capacitance, !

i-/_:'!_-_--- and transverse breakdown voltage

_ _' vary with temperature. {

!
; I. Static discharge from one 2 I

i ,,_,_. coated surface to the other

i _...... through the film can rupture
,_ the film and break the coating

_i surface. Propulsive effl-
_° ciency is reduced, thermal }

°°" _ balance is disturbed and the

_:i, film is exposed to direct
solar radiation.

o_]1!: 2. If coated surfaces become like 1,2 1,2
charged, the coatings may be J

pushed apart, breaking the |
bond with the film. The w

',, I separated materials may be

,_, I severely damaged by dynamic |

:__ loading, reefing, and differ- !
_,..._._ ential thermal expansion.

i 3. Static charge over the non- 1.3 1,2,3,4,7 |
ii. uniform constructed, differen-

;: tlally heated/cooled sail
_ may warp the sail affecting ¢

propulsive efficiency, thermal f
i : _ • balance and attitude control.

1'' .... G' uV Resistance 1,3 1,2,6 ,

_'r_r_4" _ Susceptibility to UV radiation

.... damage may be temperature
i *from 11-1
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: Review of High Probability Failure Modes and
Assignment for Specialist Confirmation (Cont.)

"7

°" Review Coordination

Test Group Affected*

_-- Data Investigative

Failure Intez_iction Required Organizations

sensitive. UV damage to either
_ :-_'_ _ coatings or film will affect

..,_._,_ strength and possibly electrosta-
_i_il tic and optical characteristics.

_.-_:i_ Analyses in I.A. above and II.H.

i: below wlll determine failure _Gllq......... modes. O AL pAGB
_;_.... C_ POOR
_--_-_. H. Optical

_! Reflectlvity and emissivity is a
_o function of sail temperature and
_," the accumulative influence of

-- %

_- solar radiation, space erosion

and mechanical surface irregu-
_' larities.

_'

. i. Loss of specular reflectivity 3 1,6
{ reduces propulsive efficiency.

'! 2. Reduced emissivity changes 1,3 1,2,3,4,6,7

the sall thermal balance,
_ raising sail temperature.

'_". Increased sall temperature

• reduces strength and increases

....: creep. Reduced load capabil-

"_'° Ity may result in sall tear-

.... inf. Deformation from creep
....; affects propulsive efficiency
:_' and attitude control.

.... 3. Combined reduction of reflec- 1,3 1,2,3,4,6,7

" _ tivity and emissivity magni-
fy.. fies effects of II.H.2 above.

• _": Ill. Failures

The following sail sheet failure

.. modes, due to all causes, have been

identified In order of frequency.

-,: Generally only thermal environmental
causes are considered in this section.

c'

*from II-i
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_-..--i Review of High Probability Failure Modes and

°'_:.' Assignment for Specialist Confirmation (Cont.)

i_ _:! Review Coordination ,

Test Group Affected* ¥

i Data Investigative |
....." Failure Interaction Required Organizations

I

°7 A. Puncture 1,3 1,2
|

Puncture probability from space
debris (micrometeoroids, cosmic .,

_/. dust) is likely unaffected by the i
_:'_::_:[ sail temperature, however, punc-

_-_.!._. tures expose film edges and coat-

_': ing bond edges directly to the
'="__,. space environment. The puncture t

" _.... _ may. become an initial source of

_i coating bond or seam bond

........_ separ_.tion.

B. Coating Failure Leading to Base i 1,2I

_"° Failure

Cracklng.pe.iing. epara.ng.
"_ cratering of the metallic coatings

tl,at results in direct exposure

....'I of the basic film material to the
_I space environment reduces sail

,,_'t strength and accelerates aging.

: C. Debondlng 1,3 1,2,3

, i
]--__,"_'"°i Excessive heating, differential

_:;'_:°_"_!_+i:! sing of the polymer of adhesive........ entrapped air bubbles can delamI-

_i nate coatings from the film or

" .M_ cause separation of seams and

_i'i joints Reduced sail strength and_i
....-_,_L=,=....., possible attitude control distur-

_"-'i bance results..i/i.,'_l"'

D. Craterlng 1,3 1,2,3,6,7

'_ii_;i Polymer outgassing can cause sur- ,
-7-:,-, face coating eruptions, The

_:_:::_ results would be reduced propul-

I\.;i.... slve efficiency, revised sall
_.i:_',:, thermal balance, direct exposure

I._',:.:L_.., of the film to solar radiation,

I ":": and possible attitude control

,, influence.
i_ .... :- i _from II-1 "
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_w,_i Review of High Probability Failure Modes and

- Assignment for Specialist Confirmation (ContJ

Review Coordination
, !.

.}; Test Group Affected*
_i Data Investigative

; Failure Interaction Required Organizations
F . i :

h-i,-_-:,I, E. Dust (Solar Coating) 1,3 1,2,6,7

_ Dust coating of the sail reduces

reflectlvity and increases absorb-

tivlty Sall temperature increases

in all mission phases leading to

reduced sall strength and poten-
tial sall failure under load.

Reduced specular reflectivity

affects propulsive efficiency.
!:

F. Erosion 1,3 1,2,6,7
r--: :r _-

i _,_. Reduced reflectivity and increased

_:;::: absorbtivity from erosion

i ' , increases sail temperature in all ORIOINA L PAG_ f_
!--__/:_"_ mission phases. Reduced strength OF POO_ QUAIJTy_..,_.. at high temperature may result in
....._ sail failure under load. Reduced

_/i s_ecular reflectlvlty affects
propulsive efficiency.

0 <'

_ G. Crosslinking/Deploymerizatlon 1 !
: i

_} Polymer exposure to direct solar
radiation where surface coatings

_ have been damaged or from exposure

._. through the coatings may result
in revised molecular structure and

. physical properties• Susceptibil-

°._ icy to damage may depend upou tem-

perature level and accumulated

= radiation exposure.

H. Desorption 1,3 i

_. Polymer degradation from desorp-

tlon of CO2, H20 , N2 and ocher
_-- gases increases wlth temperature.

In addition to revised physical
properties after outgasslng, the

_ gaseous products may rupture coat-

ing surfaces, tear seem bonds or

chemically react with coatings

_, and adhesives.

*from II-i
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Review of High Probability Failure Modes and s

i: Assignment for Specialist Confirmation (Cont.)

o Review Coordination |

_r_'" _est Group Affected*
Data Investigative !

: Failure Interaction Required Organizations

ISPACE VACUUM ENVIRONMENT

_ii' The vacuum environment of space results in
',_ evaporation of materials, volatile compo-&:

nears of materials and the layer of |
_ii absorbed gas on the surface of the mater s

_, ial. Evaporation of one or more compo-

_._._-_- nears of the material results in changes !
_;ii_ in the bulk mechanical and physical

properties.

i- _-: IIV. Environments

o,_,,>': Failure interactions must be consid-
_i_ ered for sail properties reflecting

_-_ i the appropriate accumulated environ-
,, mental history.

]
; A. Thermal 1,3 1,2,3,6,7

.' The rate of desorption and eva- t
_ poration increases with tempera- |

......... ture. Outgassing revises physi-
.... cal properties, affecting sail

"_o,? strength. In addition, the

_," gaseous products may rupture

' coating surfaces, tear seam bonds

_'_ or chemically react with coatings '
"_, and adhesives affecting propulsive

_i efficiency and attitude control.

i/ B. Photons 1 1,2,3,4,7

Evaporation in vacuum is dependent T
upon the cumulatlve ultraviolet

.... radiation exposure. Revised mole-

:_ cular structure from UV exposure
may increase mass loss and embrlt-

_ tie sall material. Reduced flexl-

" bility results in coating or sheet

_ cracking during sail reorientatlon
..... or reefing.

.... *from II-1
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Review of High Probability Failure Modes and

_: Assignment for Specialist Confirmation (Cont.)

: I Review Coordination
Test Group Affected*

,_.: _ Data Investigative
_.:.__ Failure Interaction Required Organizations

C. Micrometeoroids i 1,2,4

":. Punctures from micrometeoroids

; I expose film and coating bond edges

_ii I to space vacuum. The puncture may
_ become an initial source of coat-

.: <_ '

ing bond or seam separation.

'_=s_:.... V. Characteristics ....._:,'.\,pA_L_

Sail response to the vacuum environ- ,v, (_UAL_Y
ment depends upon changes in sail

o...... characteristics as the result of accu-
_= mulated solar radiation, space

io_'_-_ vacuum and temperature history at
_ °_i_ the time of interest.
• _:X_ L_ _.

! _. A. Materials Specifications and 1,3 1,2,3,4,6,7
_-'_ Process Specifications

i o _--,r. The sail must provide a service

life of 4-1/4 years minimum in

space vacuum. Materials must not

" have gas or air pockets that can

, expand in vacuum to rupture the

_ _ sail. Process specifications

_ must prevent gas or air inclusions

_:_ :' in adhesives since these can

....._=_i: expand in vacuum, rupture sail
"o'_°: sheet and coatings, reducing sail

........... strength, upset thermal balance
and cause sail distortion.

,. B. Temperature i 1,2,4,7

_ - Vacuum exposure may change the

": physical properties and thermal
_ characteristics of the sall mater-

_" ial. Changes in specific heat

i ':_,": and thermal expansion coefficient
!

...." ,i ' affect sail temperature and6' ;

! thermal balance.

i, i
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° Data Investigative

'i_" Failure Interaction Required Organizations I

:: C Strength See IV.A. See IV.A y

:_d_. Sail strength is affected as
_" physical properties change from

• t

. , outgassing or bonds are disrupted

:_-" ": by rupture or chemical action.

_i_il The effects on propulsive effl-

_'!, clency and attitude control 1together with failure modes

_ .,! under load are analyzed under
..... _ item I V.A. above.

;; D. Substrate Bonds See IV.A. See IV.A.

......i Bond rupture from outgasslng of
_. entrapped gas or pol_mer decom-

_o position products reduces sall

" _.! strength, affects propulsive
efficiency and attitude control !

_ as analyzed under item IV.A.
• above•

• E. UV Resistance i 1,2

_° Susceptlbilltyto UV damage may |

_i change as polymer outgassing pro- l
,= gresses. This may be due to basi(

polymer characteristics or to _,
_._ increased UV exposure (direct)
'.. because of coating rupture. UV

_--: damage to fllm or coatings will

• '_ affect strength characteristics.
" Analyses under IV.A. above wlll

....._ determine fallure modes.

|:i: F. Optical 1,3 1,2,3,6,7

'" The space vacuum environment has

: an ind_.rect Influence upon sail

! reflectivity and emissivity.

These properties are not directly
• affected by vacuum exposure but

i by the results of surface changes
from outgasslng eruptions.

•from ll-i {
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I...... . Optical changes affect thermal

'_!i_'i;:I.: balance, propulsive efficiency and
attitude control.

VI. Failures

.o_,- The order of frequency of sail failure
_, _,'":. modes has been established from the

_,::_i:_ interaction of all causes Generally,

only vacuum environmental causes are
_ o _ considered in this section.

>/"

i '_: A. Puncture 1 1,2

i _'''_ Probability of puncture is likely
!i _i unaffected by the vacuum environ-
,i_. ment, however, punctures expose

!, film and coating bond edges
directly to the space environment.o"

i ;_' ' The puncture may become an initial

i ', _i source of coating bond or seam
_, _: bond separation.

_= °o B. Coating Failure Leading to Base i 1,2

Failure

.i j _.ii Cracking, cratering, of the metal-

i '_'_:' lic coatings from outgasslng
,_!, results in direct exposure of thebasic film material to the space

:_ :_ _ environment reducing sall strength

! _!.-_ and accelerating aging.

......... ! C. Debonding I 1,2,3

/, Outgassing of the polymer or adhe-

i slve entrapped air bubbles can
c- _ delamlnate coatings from the film

•:. or cause separation of seams and

_'..... joints. Reduced sail strength

; ] and possible attitude control dis-: turbance results.

|_::"°,....' *from II-i
0
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m++,_ D. Cratering 1,3 1,2,3,6,7 I
)+' .

....._ Polymer outgassing can cause sur-
_+_ face coating eruptions• The

results would be reduced propul- I...._ sive efficiency, revised sail

, thermal balance, direct exposure

• of the film to solar radiation, i'_o?i and possible attitude control

_i! influence.

%%_

=_W_io E. Crosslinking/Depolymerization i 1,2,4 )= o . ,:

o:_ Polymer exposure to direct solar

_rm' radiation where surface coatings
_,; have been damaged by outgassing
_ may result in revised molecular

,,: structure and physical properties. I+'+,!:. Susceptibility to damage may
+ o depend upon accumulated radia-

o,-.:+- tion exposure.

oli F Desorption/Outgassing 1,3 1,2,3,4,6,7

,._-,: Polymer degradation from outgas- I' .: sing of CO2, H20 , N2 and other
_Oo: gases depends upon ambient pres-

_:i sure and temperature• In addition

to revised physical properties I
+i,#x._, '

_+"o?: after outgassing, the gaseousy 'i_ ..

...._, products may rupture coating sur-

._il faces, tear seam bonds or chemt--_'_,' cally react with coatings and
+_ ". adhesives.

• I

+Pr_ ' ' +

<]'_ I
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The preceding considerations of in-space
sall failure modes under the influence of

!. thermal and space vacuum environments have
described failure modes common to those

caused by other environments. To avoid
descriptive redundancy, the following
failure interactions under the influence

of space radiation, solar wing and microm-
eteoroid environments, will reference the

applicable preceding failure descriptions

and add only unique failure interaction
descriptions.

PHOTON ENVIRONMENT '_._r'_:_.,I'IY,.

" The infrared and ultraviolet radiations

.... _ are potentially the most destructive por-

_ _ f tlons of the solar spectrum. IR radiatioz
is essentially heat that must be dissi-

pated by a high emissivity backside sall

_ :' | coating. UV radiation can alter the mole-

_ P cular structure, and thereby the physical
and thermal properties, of the organic

_" | sall film and adhesives.

!
_/ VII. Environments See I,II See I,II,III" (L,. t t

_i i III, and III, and IV.A.
.........r ....._ | Thermal IV .A.

o.._' Sail strength and susceptibility to

_i. _ applied load failures is a function

: __. | of temperature. Tests and analyses

_i of Sections I, II, III, and IV.A.
are

o _ | applicable. Damage to film, bonds or
......' _ coatings from accumulated UV exposure
...._ can reduce sail strength at all

_° I temperatures.

:_. I

I *from II-I
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VIII. Characteristics

The accumulated UV exposure at a given }

I mission milepost will affect sail

characteristics and response to the

i! thermal vacuum and loads environment.
I

/

_ A. Materials Specifications and 1,3 1 ,
_i Process Specifications I
!, The solar sail mission includes

operation in the high intensity
:: radiation environment of a 0,25 AU i
!: solar orbit. The basic film and

,:' adhesives must be stable in the UV ¶

environment and UV stable coatings I
!i must limit maximum sail tempera-

ture to 315°C.
i

B. Aging See ll.B. See II.B.

C. Temperature See II.C., See II.C., and
and V.B. V.B.

i D. Strength See I.A., See I.A., and ,

and IV.A. IV.A.I
i

'i. E. Coating Thickness

Coating thin spots resulting from |

the manufacturing process or ero-

sion can cause local hot spots v
from IR radiation and expose
adhesive and film to direct UV

: radiation. Potential effects are

upset thermal balance, reduced |
local strength, and reduced pro-

w

pulslve efficiency.
¥

,i F. Substrate Bonds 1,3 1,2,6,7

! Bond strength may be reduced from
_ local direct exposure to space !,f

L radiation as discussed in VIII.E.

above.

*from II-! " •
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G. Cptical 1,3 1,6,7

Optical properties of the sail

ii will be affected if IR or UVJ exposure causes swelling of the

film or adhesive such that reflec- i_I( ]\AL
tlve surfaces are distorted or OF •
ruptured, or if pigmentation U,)i,QU21i.]_,y _
changes occur affecting transmit-

tance. Effects of optical prop-
: erty disturbance are upse_ thermal

i:: balance and reduced propulsive

_ efficiency.

IX. Failures

A. Puncture --See III.A. • See III.A.,

i B. Coating Failure Leading to See III.B., See III.B.,

° Base Failure VI. B. Vl. B.

_ C. Debonding See III.C., See III.C.,
, VI .C. Vl .C.

_i: D. Cratering See III.D., See III.D ,
_ ZIF:
_B.. VI.D. VI.D.

...."'__' E. Dust (Solar Coating) I 1

_i Dust coating will increase sail

temperature in all mission phases,

Susceptibility to UV damage may

_ __' be temperature sensitive.

...... F. Erosion i 1

!_='-i-' Reduced reflectivity from erosion
:!:._:_ will increase sall temperature.

!_i,_ UV damage may be temperature
_:_:' sensitive.

*from II-I
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° • G. Crosslinking/Depolymerization See III.G., See III._.,

_--_ . VI.E. VI.E,

_;i H. Desorptlon/Outgassing I ISee also See also

L:_ Polymer degradation from outgas- III.H., III.H.,

'_:i' sing of CO 2, H20, N2 and other VI.F. VI.F.
°i:. gases increases from IR induced

,_Wmm_i: temperature increases. The

2.-.<: revised film and adhesive mater-
ial may be more sensitive to

i °_ °:: UV damage.
<,'

__--......i SOLAR WIND ENVIRONMENT

_'. Corpuscular radiation from the sun is ..
...._' called the solar wlnd. Interplanetary

_:_ dust and gas is blown outward from the

_ _: sun by the solar wind.

_ _ X. Environments

'_2' A. Shape 1 1,3,6

'-_iii The gross response of the sail

i/i _k, shape to the solar wind can affect

,. propulsive efficiency and attitudei '--",'. control.
!_ ,_L,L.o<

il
:i_ B. Temverature 1 1,3,6

' i

Sall response to solar wind
caused loads will depend upon

physical properties at the applic- I_: able temperature.

....i |

II-18
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! _o_ C. Electrical Charge

_: i. The ionized particles of the See II.F.I, See II.F.I,

solar wind may create a static II.F.3 II.F.3

' charge on the front (sun) side

,i. of the sail. Static discharge_o.

,__,: may occur rupturing the film
_: as considered in II.F.L. The

o._- static charge may warp the

_i.: sail as considered in II.F.3.

2. The charged particles may 1 1,6,7

degrade reflectance charac-

i .. teristics with influence on

thermal balance and propulsive

°}_iI efficiency.

_. Xl. Characteristics

A. Materials Specifications and 1 1

-Lo. Process Specifications

d

Solar wind density is low_ varia-

_'" '. ble and patchy due to irregulari-

_ ties of sun surface eruptions and

_'" the interplanetary magnetic field.
.... The materials selection must con-

i _ sider the probable maximum elec-
o tron energy and fluence of the

...._ solar wind environment.

B. Aging 1,2,3 1,2,4,7

_._. The ionized particles of the
solar wind may contribute to

_ hardening or embrlttlement aging

of the sail. Conversely, aging

from UV exposure may affect the

_ charging characteristics of the

sail. Aging would affect sall

: strength and thermal balance.

*from II-i
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c.
.... :_': Sputtering from collision of solaro "

_ wind ions and erosion from colli-

slon with solar wlnd-borne dust_ ,_i,,_ may erode the front side of the

: sail. Tensile and yield strengths

=;°; may be reduced. Aging from elec-o-__._--- tron collisions may reduce sa_!
_ _:i fatigue strength.

£_._i,_I_ D. Electrostatic Forces 1,2,3 1,3,6,7 1

: Collision with solar wind ions

_ _: will either tend to neutralize i
....i_l/i: the static charge on the sall_ front or will create a static

charge. In either case the sail

shape can be influenced affect- 1
-_ ing thermal balance, propulsive

....:'::' efficiency and attitude control.

t
-_ E. Coating Thickness 1,3 1,3,6,7

_" Erosion from sputtering or par- I° : tlcles, as considered in XI.C.

_z above, may reduce coating thick-

'_ _. hess. Optical properties will be_ affected. Coating thickness,

_ ._ including tolerances, must accom-
.......... modate the erosion, retaining

,: satisfactory optical properties I_ and protecting the basic film.

o_ F. Electrical See II.F.I, See II.F.I, I.,i:: II.F.3 II.F.3
Coating erosion by the solar wlnd

may change sail electrical pro-

perties of surface resistance, I
.... capacitance, and transverse break-

down voltage. Failure interac-

, tlons are as considered In II.F.I I "..... and II.F.3. above.
.i

*from II-1
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G. Optical 1,3 1,6,7

-_!_i! Degradation of optical properties_- from solar wind caused sputtering
_L and erosion will affect sall

_:_i! thermal balance and reduce pro-
.:_., pulsive efficiency.

';_!_i' Xll. Failures

A. Puncture i,3 1,2,4,6
See also See also III.A.

Solar dust impact may puncture as III.A., VI.A.
_' well as erode the sail. Punt- VI.A.

=o _ ture will reduce sall strength

o_/_ and propulsive performance._F;I'_ B. Coating Failure Leading to See III.B., See III.B.,

o_, Base Failure VI.B. VI.B.

.: C. Craterlng 1,3 1,2,4,6,7
__

Craterlng in the solar wind

environment is caused by the sput-
! '

i tering from ion collisions.
Effects are reduced sall strengthI

I _-_i and propulsive efficiency in addi-
_ tlon to potential thermal balance

F'_'I e_ fe_ts from reduced re f_ectlv-Ity.

:! D. Dust (Solar Coating) See III.E. See III.E ........_:_,_ E. Erosion See III.F. See III.F.

*from II-i
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MICROMETEOROID ENVIRONMENT

_. Micrometeorite impact will most certainly

_- puncture the sail. Behavior of the sail

_._,_ material under hyperveloclty particle
,'_:,ii impact should be determined. Character- I

_ ._.: istics of the hole created will influence
_. failure modes from this environment.

'_'::'"" Flight path planning will avoid known i• ....:,f
....; space debris belts g

_ XIII. Environments |
!o

o ,

Thermal 1 1,2,4

See also See also I,II,
• 'lhe thermal environment does not I,II,III, III,IV.A., I

_.:. affect the susceptibility to microm- IV.A., IV.C.
_o_ eteorite impact but sail strength IV.C.
_ and load capability degradation from

! punctures will be amplified at high

L _= _" temperature. Sail brittleness at: = _: low temperatures may amplify damage

i _ from a mlcrometeorite impact by
_ , shattering or cracking film and

.......: coatings beyond impact particle

I
.... dimensions.

.

.. XIV. Characteristics

i t_-., A. Strength I 1,2_4

.... Sail load capability is reduced b

• I_,_. micrometeorlte puncture.

_::

B. Optical 1,3 1,6,7

I: Micrometeorite puncture reduces

reflective surface area affecting

'_i! propulsive efficiency• The punc- q

d_ ture characteristics on the sall |
_ back sld_ may affect emlttance

beyond the reduction in area due d

to the puncture• Thermal balance
is therefore a potential problem q ,.
area.

•from II-i I
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XV. Failures

,!i_/i ' A. Puncture I 1,2,4,6,7

'_;_! Sail puncture from mlcrometeoriCe
'_''_-_" impact reduces sall strength and

propulsive effl=iency and may

affect thermal balance. Exposure

of film and bond edges directly to
the space environment may initiate

bond separations around the

!/ ,_ _: puncture.

_ ,_-_ B. Coating Failure Leading to I 1,6,7
°i: Base Failure

,_. Hyperveloclty mlcrometeorlte
.... impact may shatter, peel, expload

_-'_m" or craze the reflective coatings
_i_:_, near the puncture. Such action

would expose the basic film mater-

_i I lal directly to the space environ-
,i__i_ ment potentially hastening degra-

dation. Propulsive and thermal
...... performance losses would be

o_ : greater than that due just to the
"_ puncture area.
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_" P()()R QUALITYIRRADIATION CHAMBER CALIBRATION EXPERIMENT

" |.i

:. This experiment was designed by JPL and Bo_ing to compare

_" I solar illumination obtainable in the laboratory with the intensity of
: radiation anticipated for a Solar Sail in space• A series of experiments

_ was eventually performed, by which conventional means of doing UV dosim-
etry in the laboratory were checked against a calorimeter designed to

:.: _ have solar absorptance (as) and thermal emlttance (E) coefficients simi-•i lar to those of the candidate Solar Sail film materials. The calorim-

' eter was delivered to BoeinF, and installed inside the CRETC II sampleI

....._ _ ' exposure chamber just in front of the test film sample plane (Figure A-l)

!,

L''

r2_:.

O

d_. .

Figure A-I. Aluminized Kapton Calorimeter Exposed to 16-Sun
d-- Solar Simulator Beam

• lll-I
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' oi A Solar Sail film in a plane, receiving radiation on its

_-_+_'_- front side and emitting radiation on both sides, would equilibrate at
Y

+ a temperature T such that

l%r" T4 = =s (SC) (SR)

- o (of + _b)"

"o' °: where SC is the solar constant, SR is the sun rate, and _ is the Stefan-

Boltzmann constant. It can be shown that Solar Sailing under near-sun

.....7: conditions (namely, SR = 16 times the solar intensity at Earth's orbit)

results in an equilibrium temperature of approximately +250°C for
o

aluminized Kapton that has an emittance-enhancing coating on the hack

side. On this basis a calorimeter closely simulating a Solar Sail

...... _:- film in _ and c characteristics could be used in a vacuum chamber to

.+_ set the intensity of radiation from a solar simulator, provided secon-

: dary (bounce) radiation in the chamber were comparable to view factors

o ! (spacecraft geometry) in space.

-_ The calorimeter discussed above is a circular disk with a
o

_,R diameter of two in. and thickness of 0.I in. Hence it approximates

a Solar Sall film in a plane. It was fabricated by TRW with 2 chromel-
o

, " alumel thermocouples on the unirradiated side, one at the center and

' the second 0.707 in. from the center - the radius which divides the

calorimeter's total area into halves. Assuming edge losses of heat

are small around the perimeter of the calorimeter, its thermocouple(s)

+' will indicate the same equilibrium temperature as stated above for

_i_! the case of irradiation and partial absorption on its front side and

+_ thermal emission from both sides (front and unirradiated back).

The irradiation source must be discussed from the stand-

point of its spectral content, since absorption on the front face of a

" Solar Sail or the calorlme_er varies with the wavelength. It is pre-

,+ sently _mpractlcal _o obtain total irradiation levels like 16 suns

_, (to simulate near-sun Solar Sailing trajectories) along with "close

filtering" spectral matches using a simulator mobile enough to be com- ...
+

blned with an ultra-hlgh-vacuum chamber and charged particle accelerator.

• (That is, the nearly immobile X-75 and X-200 style solar simulators

_; ,,_ 11
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_j._ that have enough energy tu trade for close spectral filtering are not
_' currently available, and the more mobile, X-25-type power limitations

,_ i must be settled for.) As a result, the relatively large emission from

• a xenon arc in the near infrared (0.8 to 1.2 micrometers) is utilized

along with the desired continuum across the visible and near-ultravlolet

: wavelength regions. Table A-I shows the relative spec,ral energy appli-

,: cable to the start of exposure of metallized film samples.

o : Table A-I. X-25 Solar Simulator Relative Output
v .

: Data Matched Engineering

_ i Bandwidth Scaled to 1 Solar C_nst. Standard %
,:.... ' (micrometers) Data (watts/m z) (watts/m 2) Deviation

_'_ 0.25 0.35 4.7 27.3 58.5 -53.3

0.35 0.40 06.7 38.9 56.9 -31.6

0.40 0.45 8.5 51.3 89.6 -40.9

_ 0.45 0.50 10.7 64.6 100.9 -36.0

0.50 0.60 22.8 137.7 177.0 -22.2

° 0.60 0.70 22.4 135.3 151.5 -10.7

0.70 0.80 19.5 117.8 123.6 -4.7

_ 0.80 0.90 33.0 199.3 99.3 +100.7

....ii" O. 90 i. O0 32.2 194.5 82.6 +135.5

: 1.00 1.20 22.2 134.1 120.7 +ii.i

. 1.20 1.50 18.1 109.3 111.8 -2.2

1.50 1.80 i0.5 63.4 66.9 -5.2

: 1.80 2.20 8.6 51.9 43.8 +18.5

.... 2.20 2.50 4.1 24.8 , 19.9 +24.6

i !
u

_o4: The three bands with the longest wavelengths partially repre-

_, sent emission from the incandescent electrodes of the xenon arc source

lamp. This we eliminate by insertion of a water window between the

" _ solar simulator and the sample expo,ure chamber, since pure water

- _,-,,-'.---' absorbs wavelengths longer than _1.4 micrometers and transmits shorter

(, .,,.t _AL PAOI_ IS
01'I'_)()R QUALITY

111-3
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'_'_'_ wavelengths down to approximately 0.2 micrometers. "Scaled data"

represents energy arriving at the detector on a modified Beckman DK-1/

spectro-radiometer measuring system. This data is then matched to the

:: spectral shape of the solar constant in space (air mass zero) in accord-

"_ ance with NASA/IES engineering standards. The deviations of spectral

power obtainable, compared with the ideal represented by latest meas-

.....: urements of actual solar output, are included in Table A-I. ,

_:: Between the first and second test stages for the space

o" radiation test, program, Boeing modified the in situ mechanical property I

'_j_." test apparatus to provide for insertion of the disk calorimeter in

°° front of the sample plane, and removal at any time using an in sltu

.....: remote manipulator. As the metallized film experiment was about to
i :r

_ begin, the calorimeter disk was moved into the solar simulator's "IN"

_:" : beam. The group of 10 test samples Intervened between the calorimeter's

_-_' emitting back surface and the water-cooled sample block, modifying the

....o [: effective emtttance of the calorimeter an unknown amount. It was deter-

':: mined that the solar simulator needed to be set at an output level

°z,_. considerably lower than that indicated as 16 suns by a pyrheliometer,

_ ° ; if a calorimeter equilibrium commonly used for this type of dosimetry •

/[ _hen indicated that approximately nine total suns and seven UV suns

_7 were incident on the sample (or calorimeter) plane under these conditions.
¢,o

In the second test set, after 22 hours of exposure the deci-
o

; o s_on was made to return to the usual pyrheliometer dosimetry as a basis

for setting solar simulator output intensity. This decision acknow-

.....,. ledged that the presence of an array of test samples between the caiort-

meter and the water-cooled sample block effectively altered the

._i properties of the calorimeter so that its indicated temperature should

" : not be used as a basis for setting the solar simulator's output level.

:. The solar simulator output was according?v increased to an intensity

_- of 16 total suns as determined by pyrhe:iumeter dosimetry readings.

_. Tim calorimeter was not reintroduced into the "UV" beam at tl_15 time,

.... o because it was known that the solar simulator intensity was now great

' : enough to degrade the calorimeter materials thermally. That is, pre-O ,

• :: ( vious short-time insertions of the calorimeter into such an Intense'

i

....... _ IlI-4

-, (3 _ :.

/t
i b
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beam had shown by the slope of the response curve on a strip chart

recorder that an equilibrium temperature S_bstantially above ±330°C

would be reached.
.... _ .:.'_AI,l'\_f t.'

At the end of the metallized films (Test Set No. 2) experi-

'_ menr the solar _imulator output level, which was still being maintained

at 16 total suns using pyrheliometer dosimetry, was again compared with

:_ indicated calorimeter temperature. The output level of the solar simu-

o o lator had been adjusted and the optics cleaned from time to time

: throughout the llO0-hour exposure period of the "second test stage."

....._ The final-output dial set=ings, not easily relatable to the output

_- settings at 22 hours, understandably also resulted in calorimeter

' temperature indications too high to be sustained safely. The array of

_i samples at test end was quite twisted and irregular in shape. Portions

of the back surfaces of some test samples were seen to be facing the

.... radiation, sources. In such areas greater absorption occurred, due to

:: the existence of the emissive coating. This led to higher temperatures

° than planned for the specimens. The twisting modified the calorimeter's
i,

o_ effective emittance to an unknown and different degree than at the start

o_- of the experiment. It was determined that the only precise data that

°_i could be obtained would be a comparison of the calorimeter's temperatures

, for cases of samples present and samples absent (for a certain reduced

_ simulator output level). Subsequently an equilibrium temperature of

+334°C was obtained from the calorimeter with samples still present and

a certain solar slmulaaor dial setting. After the ten test samples had

o_i, been removed a calorimeter thermocouple temperature of +330°C was

= obtained with the same dial setting. All temperature readings noted

_ here were obtained using the thermocouple at the center of the calori-

= meter's unirradiated side. Readings from the thermocouple closer to

the unirradiated side's edge were consistently 3°C less.

: With the ten test samples removed, an outgassed film was

'i clearly observable on the water-cooled sample block Just behind the

test sample p].ane. The patterns of outgassed material were typical

of thin film interference coatings. As with all other phases of the

program, high quality color photographs were taken to document the
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'_ _. condition. Color enlargements were subsequently forwarded to JPL.

;'i Figure A-2 is o reproduction of the patterns of outgassed molecules.

, Close examination of the original photos shows the patterns can be

_elated to polyimide sample placement and subsequent twisting during

_l_!_p___! the ll00-hour irradiation period. Even the elevated positions of the
1-gram weights below the shortest (Ciba-Geigy) metallized samples can

_. be discerned from a close examination of the photos.

The emittance of the thin film pattern of outgassed mole-

i"ii_.,, cular matter was not measured. It has been estimated, however, as

li!j_!i.,,o_ being substantially greater than the emittance of the nickel-plated,

!i:!_! water-cooled sample block. The small 4°C difference in cal,,rimeter

._': equilibrium temperatures when the cases of samples present and samples

absent are compared shows that the array of narrow, twisted test samples

following ii00 hours of irradiation had net radiative exchange chara-

acteristics not "nlike the outgassed thin film pattern.

o •_

i[. ..

L::TI:

L____" '_

Figure A-2. Outgassed Thin Film Pattern Behind Metallized
i

Polylmlde Films Irrad|ated for lO0 hours.
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APPENDIX IV

LIST OF PUBLICATIONS (CONTRACTOR REPORTS)

1. E.J. Bradbury, D.M. Bigg, Chong Wan, D.L. Chambers and F.A.

Sliemers, "Survey and Assessment of Monolithic Film Materials and

Associated Manufacturing Processes for a Solar Sail.", Battelle

_;": Columbus Laboratories Interim Summary Report, JPL Contract 954659,

May 2, 1977.

2. L.B. Fogdall and S.S. Cannaday, "Simulation of Space Radiation

Effects on Polyimide Film Materials for High Temperature Appli-

: cations", _Boeing Aerospace Co., Final Report, JPL Contract 954701,
November 1977.

_'_ 3. E.E. Luedke, "Thermophysical Properties of Solar Sail Materials",

i TRW Defense and Space Systems Group Interim Technical Report foethe Period 12/1/76 to 3/31/77, JPL Contract 954660, TRW Sales

_. 4. E. Luedke, "Thermophysical Properties of Solar Sall Materials"

_- TRW Defense and Space Systems Group 2nd Interim Technical Report,
_
il 4/1/77 to 6/30/77, JPL Contract 954660, TRW Sales No. 31750 000

}i 5. B. Schneicr, T.V. Braswcll, and R. Vaughn, "Feasibility Demonstra-

tion for Electrocasting of Ultrathin Polylmide Films", TRW Defense

• and Space Systems (;r,,up,Final Report No. 32052-6009-RU-00, JPL

Contract 954771, August ]978.

_ 6. R.H. Forester, "The Production of Ultrathin Polylmide Films for

I'; the Solar Sall Program and Large Space Structure Technology, A

Feasibility Study", Midwest Research Institute, Final Report

Z MRI Project No. 4437-N, JPL Contract 954849, June 1978.

"_ 7. E. Luedke, "Thetmophysical Properties of Solar Sail Materials",

TRW Defense and S_ace Systems Group, Summary Final Report, period

7/77 to 7/78, JPL Contract 954660, TRW Sales No. 31250.000.
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:;'l: 8. E.J. Bradbury, R.J. Jakobsen and F.A. Sliemers, "Analysis and

Assessment of Film Materials and Associated Manufacturing

Processes for a Solar Sail," Battelle Columbus Laboratories,

; Summary Final Report, JPL Contract 954659, February 1978.

9. R.E. Howe, "Feasibility of Continuous Etching of Kapton Film

for Solar Sail," June 1977, P.O. No. A419OIB(GP), Surface

Activation Corp.

i0. T. Smith, "Study of Changes in Properties of Solar Sail

Mater.lals from Radiation Exposure," Rockwell International

Science Center, Interim Report No. i, Subcontract No. 954776,

_... July 1977.
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